Prof. Dr. M. Schottenloher

C. Paleani

M. Schwingenheuer

A. Stadelmaier

Übungen zur Funktionentheorie Übungsblatt 7

1. Betrachte $\mathbb{C}^* = \mathbb{C}^{**} \cup \mathbb{C}_+$ mit $\mathbb{C}_+ = \mathbb{C} \setminus \{x \geq 0\}$, also die negativ und positiv geschlitzte Ebene. Auf \mathbb{C}^{**} ist der Hauptzweig $Log_0(z)$ des Logarithmus definiert (wie in der Vorlesung) und auf \mathbb{C}_+ ist der Logarithmus $L(z) = log|z| + iarg_+(z)$ mit $arg_+(z) \in [0, 2\pi[$, so dass $z = |z|(\cos(arg_+(z)) + i\sin(arg_+(z)))$ ist, definiert. Überprüfe, dass Log_0 und L auf der oberen Halbebene übereinstimmen, sich auf der unteren Halbebene aber um $2\pi i$ unterscheiden. Warum müssen sie nach dem Identitätssatz nicht überall übereinstimmen?

Bemerkung: Ausführliche Begründung!

2. Berechne das Integral

$$\int_{\alpha} \frac{1}{1-z^2} dz$$

für

- (a) α die Figur-Acht Kontur aus dem Präsenzblatt 5.
- (b) α das achsenparallele Quadrat mit Seitenlänge 2 und Mittelpunkt 1 gegen den Uhrzeigersinn.
- 3. Als Verallgemeinerung des Satzes von Liouville zeige man, dass jede ganze Funktion f, zu der es M, R > 0 und $n \in \mathbb{N}$ gibt mit

$$\forall z \in \mathbb{C} : |z| \ge R \Rightarrow |f(z)| \le M|z|^n$$

ein Polynom vom Grad \leq n ist.

Hinweis: Zeige zuerst, dass sich die k-te Ableitung durch

$$|f^{(k)}(0)| < Mr^{n-k}$$

für grosse r unabhängig von r abschätzen lässt.

- 4. Sei $G \subset \mathbb{C}$ ein Gebiet. Die Funktionen $f \colon G \to \mathbb{C}$ und $h \colon G \to \mathbb{C}$ seien stetig reell differenzierbar und verschwinden nicht identisch. Es gelte
 - (a) $\frac{\partial f}{\partial x} = fh$
 - (b) $\frac{\partial f}{\partial y} = ifh$

auf G. Zeige, dass f, h holomorph auf G sind.

5. Es sei f eine Funktion, die in einer Umgebung von $\overline{D(0,r)}$, r>0 holomorph ist. Zeige

(a)
$$f(0) = \frac{1}{2\pi i} \int_{\partial D(0,r)} \frac{f(\zeta)}{\zeta} \frac{\bar{\zeta}}{\bar{\zeta} - \bar{z}} d\zeta$$

für alle $z \in D(0, r)$

(b)
$$\bar{f}(0) = \frac{1}{2\pi i} \int_{\partial D(0,r)} \frac{\bar{f}(\zeta)}{\zeta - z} d\zeta$$

für alle $z \in D(0,r)$

Hinweis: Zur ersten Teilaufgabe berechne man $\frac{1}{2\pi i}\int_{\partial D(0,r)}\left(\frac{f(\zeta)}{\zeta}+g(\zeta)\right)d\zeta$ mit $g(\zeta):=\frac{\bar{z}f(\zeta)}{r^2-\bar{z}\zeta}$. Für die zweite darf $\overline{\int_a^b g(t)dt}=\int_a^b \bar{g}(t)dt$ verwendet werden. Für eine Funktion f sei, $\bar{f}=c\circ f$ mit $c\colon\mathbb{C}\to\mathbb{C};z\mapsto\bar{z}$ der komplexen Konjugation.

- 6. Sei $G \subset \mathbb{C}$ ein beschränktes Gebiet. Zeige
 - (a) Eine in \bar{G} stetige und in G holomorphe Funktion nimmt ihr Betragsmaximum auf dem Rand von G an.
 - (b) Eine holomorphe Funktion f auf G die "bei Annäherung an den Rand von G gleichmässig gegen 0 strebt", ist bereits die Nullfunktion. Präzisiert bedeutet die Bedingung oben, dass es zu jedem $\epsilon>0$ ein $\delta>0$ gibt, so dass für alle $z\in G$ mit $d(z,\partial G)<\delta$ stets $|f(z)|<\epsilon$ gilt.

Bemerkung: \bar{G} bezeichnet den Abschluss von G, $\partial G := \bar{G} \setminus G$, den Rand von G und $d(z, \partial G)$ den Abstand von z vom Rand von G.

Hinweis: In der zweiten Teilaufgabe ist die Funktion f auf dem Rand noch nicht definiert!

- Bitte wählen Sie 4 der 6 Aufgaben aus (volle Punktzahl bekommen Sie für 4 vollständig gelöste Aufgaben). Falls Sie mehr abgeben werden nur die ersten vier korrigiert!
- Alle Aufgaben tragen das gleiche Gewicht (4 Punkte)
- Lösungen zu diesen Übungsaufgaben können bis **Montag den 15. Juni 14:00 h** in die Übungskästen der jeweiligen Gruppe vor der Bibliothek eingeworfen werden.
- Bitte versehen Sie Ihre Abgabe mit Namen und dem Buchstaben Ihrer Übungsgruppe.
- Bitte heften Sie Ihre abgegebenen Blätter zusammen.