Dr. E. Schörner

Tutorium zur Vorlesung "Mathematik im Querschnitt"

49. (Staatsexamensaufgabe Frühjahr 2009). Man zeige, daß die Quadriken

$$Q_1: \quad 5x^2 + 4xy + 2y^2 - 1 = 0, \qquad Q_2: \quad 3x^2 + 6xy + 11y^2 - 2 = 0$$

in \mathbb{R}^2 metrisch äquivalent sind, und gebe eine Kongruenzabbildung von Q_1 auf Q_2 an.

- 50. (Staatsexamensaufgabe Frühjahr 2001).
 - a) Man zeige, daß die beiden Quadriken

$$Q_1: 3x^2 + 2xy + 2y^2 = 1,$$
 $Q_2: 3x^2 + 2xy + 3y^2 = 1$

zueinander affin äquivalent sind.

- b) Man bestimme eine affine Transformation im \mathbb{R}^2 an, die Q_1 auf Q_2 abbildet.
- 51. (Staatsexamensaufgabe Herbst 2007).
 - a) Man beweise, daß die Quadriken im \mathbb{R}^2 mit den Gleichungen

$$Q_1: x^2 + 4xy + 6y^2 = 1,$$
 $Q_2: x^2 + 6xy + 12y^2 = 1$

nicht metrisch, wohl aber affin zueinander äquivalent sind.

- b) Man gebe eine affine Transformation im \mathbb{R}^2 an, die Q_1 auf Q_2 abbildet.
- 52. (Staatsexamensaufgabe Herbst 2011).
 - a) Man bestimme, für welche $\alpha \in \mathbb{R}$ die beiden Kegelschnitte

$$Q_1$$
: $2x^2 + 4xy + 3y^2 + 2y = 1$
 Q_2 : $3x^2 - 2\alpha xy + \alpha y^2 = 1$

affin äquivalent sind.

b) Sei nun $\alpha = 1$. Man bestimme eine affine Transformation, die Q_1 auf Q_2 abbildet.