Dr. E. Schörner

Tutorium zur Vorlesung "Lineare Algebra und analytische Geometrie II" — Bearbeitungsvorschlag —

29. a) Wegen

$$u_1 \times u_2 = \begin{pmatrix} 4 \\ -7 \\ 4 \end{pmatrix} \times \begin{pmatrix} 4 \\ 11 \\ -5 \end{pmatrix} = \begin{pmatrix} -9 \\ 36 \\ 72 \end{pmatrix} = 9 v \quad \text{mit} \quad v = \begin{pmatrix} -1 \\ 4 \\ 8 \end{pmatrix}$$

sind u_1, u_2 linear unabhängig, und es ist $U^{\perp} = \mathbb{R} \cdot v$. Wegen

$$v \times u_1 = \begin{pmatrix} -1\\4\\8 \end{pmatrix} \times \begin{pmatrix} 4\\-7\\4 \end{pmatrix} = \begin{pmatrix} 72\\36\\-9 \end{pmatrix} = 9 u_2' \quad \text{mit} \quad u_2' = \begin{pmatrix} 8\\4\\-1 \end{pmatrix}$$

ist $\langle u_1, u_2' \rangle = \langle v \rangle^{\perp} = U$; damit ist u_1, u_2' eine Orthogonalbasis von U mit $||u_1|| = ||u_2'|| = 9$, und folglich ist

$$\frac{1}{9} \begin{pmatrix} 4 \\ -7 \\ 4 \end{pmatrix}, \quad \frac{1}{9} \begin{pmatrix} 8 \\ 4 \\ -1 \end{pmatrix}$$

eine Orthonormalbasis von U.

b) Für
$$w_1 = \begin{pmatrix} -\sqrt{3} \\ \sqrt{2} \\ 0 \end{pmatrix}$$
 gilt $w \perp w_1$, und für

$$w_2 = w \times w_1 = \begin{pmatrix} \sqrt{2} \\ \sqrt{3} \\ \sqrt{6} \end{pmatrix} \times \begin{pmatrix} -\sqrt{3} \\ \sqrt{2} \\ 0 \end{pmatrix} = \begin{pmatrix} -2\sqrt{3} \\ -3\sqrt{2} \\ 5 \end{pmatrix}$$

gilt $w \perp w_2$ und $w_1 \perp w_2$. Damit bilden w_1 , w_2 eine Orthogonalbasis von W^{\perp} mit $||w_1|| = \sqrt{5}$ und $||w_2|| = \sqrt{55}$; folglich ist

$$\frac{1}{\sqrt{5}} \begin{pmatrix} -\sqrt{3} \\ \sqrt{2} \\ 0 \end{pmatrix}, \quad \frac{1}{\sqrt{55}} \begin{pmatrix} -2\sqrt{3} \\ -3\sqrt{2} \\ 5 \end{pmatrix}$$

eine Orthonormalbasis von W^{\perp} . Wegen $W = \langle w \rangle$ mit $||w|| = \sqrt{11}$ ist dann

$$\frac{1}{\sqrt{5}} \begin{pmatrix} -\sqrt{3} \\ \sqrt{2} \\ 0 \end{pmatrix}, \quad \frac{1}{\sqrt{55}} \begin{pmatrix} -2\sqrt{3} \\ -3\sqrt{2} \\ 5 \end{pmatrix}, \quad \frac{1}{\sqrt{11}} \begin{pmatrix} \sqrt{2} \\ \sqrt{3} \\ \sqrt{6} \end{pmatrix}$$

eine Orthonormalbasis von \mathbb{R}^3 .

30. Die gegebene Matrix

$$A = \begin{pmatrix} 0 & -1 & -2 \\ -1 & 0 & -2 \\ -2 & -2 & -3 \end{pmatrix} \in \mathbb{R}^{3 \times 3}$$

ist symmetrisch und damit orthogonal diagonalisierbar; für das charakteristische Polynom χ_A von A gilt

$$\chi_{A}(\lambda) = \det(A - \lambda E_{3}) = \begin{vmatrix}
-\lambda & -1 & -2 \\
-1 & -\lambda & -2 \\
-2 & -2 & -3 - \lambda
\end{vmatrix}^{\text{I-II}} =
= \begin{vmatrix}
1 - \lambda & -1 + \lambda & 0 \\
-1 & -\lambda & -2 \\
0 & -2 + 2\lambda & 1 - \lambda
\end{vmatrix}^{(\lambda - 1) \text{ aus I}} (\lambda - 1)^{2} \cdot \begin{vmatrix}
-1 & 1 & 0 \\
-1 & -\lambda & -2 \\
0 & 2 & -1
\end{vmatrix}^{\text{Sarrus}} =
= (\lambda - 1)^{2} \cdot \left[(-\lambda + 0 + 0) - (0 + 4 + 1)\right] = -(\lambda - 1)^{2}(\lambda + 5)$$

für alle $\lambda \in \mathbb{R}$. Damit besitzt die Matrix A den doppelten Eigenwert $\lambda_1 = 1$ sowie den einfachen Eigenwert $\lambda_2 = -5$, so daß der Eigenraum $\operatorname{Eig}(A; \lambda_1)$ eine (Ursprungs-)Ebene mit dem Eigenraum $\operatorname{Eig}(A; \lambda_2)$ als Lotgerade (durch den Ursprung) ist. Dies eröffnet die folgenden Bestimmungsmöglichkeiten für eine Orthonormalbasis von \mathbb{R}^3 aus Eigenvektoren von A:

• Wegen

$$A - \lambda_1 E_3 = \begin{pmatrix} -1 & -1 & -2 \\ -1 & -1 & -2 \\ -2 & -2 & -4 \end{pmatrix} \xrightarrow{\text{III}-2I} \begin{pmatrix} -1 & -1 & -2 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix} \xrightarrow{\text{II}\cdot(-1)} \begin{pmatrix} 1 & 1 & 2 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}$$

bilden
$$v_1 = \begin{pmatrix} -1\\1\\0 \end{pmatrix}$$
 und $v_2 = \begin{pmatrix} -2\\0\\1 \end{pmatrix}$ eine Basis des Eigenraums Eig $(A; \lambda_1)$.

Damit ist aber

$$v_3 = v_1 \times v_2 = \begin{pmatrix} -1\\1\\0 \end{pmatrix} \times \begin{pmatrix} -2\\0\\1 \end{pmatrix} = \begin{pmatrix} 1\\1\\2 \end{pmatrix}$$

eine Basis des Eigenraums $Eig(A; \lambda_2)$, so daß

$$v_2' = v_1 \times v_3 = \begin{pmatrix} -1\\1\\0 \end{pmatrix} \times \begin{pmatrix} 1\\1\\2 \end{pmatrix} = \begin{pmatrix} 2\\2\\-2 \end{pmatrix}$$

wegen $v_2' \perp v_3$ ein Eigenvektor von A zum Eigenwert λ_1 mit $v_1 \perp v_2'$ ist. Folglich ist

$$\frac{v_1}{\|v_1\|} = \frac{1}{\sqrt{2}} \begin{pmatrix} -1\\1\\0 \end{pmatrix}, \quad \frac{v_2'}{\|v_2'\|} = \frac{1}{\sqrt{3}} \begin{pmatrix} 1\\1\\-1 \end{pmatrix}, \quad \frac{v_3}{\|v_3\|} = \frac{1}{\sqrt{6}} \begin{pmatrix} 1\\1\\2 \end{pmatrix}$$

eine Orthonormalbasis von (\mathbb{R}^3, \circ) aus Eigenvektoren von A, so daß sich mit der orthogonalen Matrix

$$P = \left(\frac{v_1}{\|v_1\|}, \frac{v_2'}{\|v_2'\|}, \frac{v_3}{\|v_3\|}\right) = \begin{pmatrix} -\frac{1}{\sqrt{2}} & \frac{1}{\sqrt{3}} & \frac{1}{\sqrt{6}} \\ \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{3}} & \frac{1}{\sqrt{6}} \\ 0 & -\frac{1}{\sqrt{3}} & \frac{2}{\sqrt{6}} \end{pmatrix} \in \mathcal{O}_3(\mathbb{R})$$

und der Diagonalmatrix

$$D = \operatorname{diag}(\lambda_1, \ \lambda_1 \ \lambda_2) = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & -5 \end{pmatrix} \in \mathbb{R}^{3 \times 3}$$

dann $P^{\mathsf{T}}\!AP = D$ ergibt.

• Wegen

ist
$$w_1 = \begin{pmatrix} 1 \\ 1 \\ 2 \end{pmatrix}$$
 eine Basis des Eigenraums Eig $(A; \lambda_2)$, so daß $w_2 = \begin{pmatrix} -1 \\ 1 \\ 0 \end{pmatrix}$

wegen $w_1 \circ w_2 = 0$ auf w_1 senkrecht steht und damit ein Eigenvektor von A zum Eigenwert λ_1 ist; des weiteren ist

$$w_3 = w_1 \times w_2 = \begin{pmatrix} 1 \\ 1 \\ 2 \end{pmatrix} \times \begin{pmatrix} -1 \\ 1 \\ 0 \end{pmatrix} = \begin{pmatrix} -2 \\ -2 \\ 2 \end{pmatrix}$$

wegen $w_3 \perp w_1$ ebenfalls ein Eigenvektor von A zum Eigenwert λ_1 mit $w_2 \perp w_3$. Folglich ist

$$\frac{w_1}{\|w_1\|} = \frac{1}{\sqrt{6}} \begin{pmatrix} 1\\1\\2 \end{pmatrix}, \quad \frac{w_2}{\|w_2\|} = \frac{1}{\sqrt{2}} \begin{pmatrix} -1\\1\\0 \end{pmatrix}, \quad \frac{w_3}{\|w_3\|} = \frac{1}{\sqrt{3}} \begin{pmatrix} -1\\-1\\1 \end{pmatrix}$$

eine Orthonormalbasis von (\mathbb{R}^3, \circ) aus Eigenvektoren von A, so daß sich mit der orthogonalen Matrix

$$P = \left(\frac{w_1}{\|w_1\|}, \frac{w_2}{\|w_2\|}, \frac{w_3}{\|w_3\|}\right) = \begin{pmatrix} \frac{1}{\sqrt{6}} & -\frac{1}{\sqrt{2}} & -\frac{1}{\sqrt{3}} \\ \frac{1}{\sqrt{6}} & \frac{1}{\sqrt{2}} & -\frac{1}{\sqrt{3}} \\ \frac{2}{\sqrt{6}} & 0 & \frac{1}{\sqrt{3}} \end{pmatrix} \in \mathcal{O}_3(\mathbb{R})$$

und der Diagonalmatrix

$$D = \operatorname{diag}(\lambda_2, \ \lambda_1 \ \lambda_1) = \begin{pmatrix} -5 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} \in \mathbb{R}^{3 \times 3}$$

dann $P^{\mathsf{T}}\!AP = D$ ergibt.

31. a) Aufgrund ihrer Symmetrie ist die gegebene Matrix

$$A = \begin{pmatrix} 2 & 1 & 1 \\ 1 & 2 & 1 \\ 1 & 1 & 2 \end{pmatrix} \in \mathbb{R}^{3 \times 3}$$

orthogonal diagonalisierbar. Wegen

$$A - 1 \cdot E_3 = A - E_3 = \begin{pmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \end{pmatrix} \xrightarrow{\text{II-I}} \begin{pmatrix} 1 & 1 & 1 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}$$

ist Rang $(A - 1 \cdot E_3) = 1$; damit ist $\lambda_1 = 1$ ein Eigenwert von A der Vielfachheit 2, und die Vektoren

$$v_1 = \begin{pmatrix} -1\\1\\0 \end{pmatrix}, \quad v_2 = \begin{pmatrix} -1\\0\\1 \end{pmatrix}$$

bilden eine Basis von Eig $(A; \lambda_1)$. Damit besitzt A einen zweiten Eigenwert λ_2 der Vielfachheit 1 mit Eig $(A; \lambda_2) = \text{Eig}(A; \lambda_1)^{\perp}$; folglich ist der Vektor

$$v_3 = v_1 \times v_2 = \begin{pmatrix} -1\\1\\0 \end{pmatrix} \times \begin{pmatrix} -1\\0\\1 \end{pmatrix} = \begin{pmatrix} 1\\1\\1 \end{pmatrix}$$

eine Basis von $\text{Eig}(A; \lambda_2)$, und wegen

$$A \cdot v_3 = \begin{pmatrix} 2 & 1 & 1 \\ 1 & 2 & 1 \\ 1 & 1 & 2 \end{pmatrix} \cdot \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix} = \begin{pmatrix} 4 \\ 4 \\ 4 \end{pmatrix} = 4 \cdot v_3$$

ergibt sich $\lambda_2 = 4$.

b) Wegen $\operatorname{Eig}(A; \lambda_1) = \operatorname{Eig}(A; \lambda_2)^{\perp}$ ist

$$v_2' = v_1 \times v_3 = \begin{pmatrix} -1\\1\\0 \end{pmatrix} \times \begin{pmatrix} 1\\1\\1 \end{pmatrix} = \begin{pmatrix} 1\\1\\-2 \end{pmatrix}$$

ein (auf v_2 senkrecht stehender) Eigenvektor von A zum Eigenwert λ_1 , und folglich bilden

$$\frac{v_1}{\|v_1\|} = \frac{1}{\sqrt{2}} \begin{pmatrix} -1\\1\\0 \end{pmatrix}, \quad \frac{v_2'}{\|v_2'\|} = \frac{1}{\sqrt{6}} \begin{pmatrix} 1\\1\\-2 \end{pmatrix}, \quad \frac{v_3}{\|v_3\|} = \frac{1}{\sqrt{3}} \begin{pmatrix} 1\\1\\1 \end{pmatrix}$$

eine Orthonormalbasis von (\mathbb{R}^3, \circ) aus Eigenvektoren von A. Mit der orthogonalen Matrix

$$P = \left(\frac{v_1}{\|v_1\|}, \frac{v_2'}{\|v_2'\|}, \frac{v_3}{\|v_3\|}\right) = \begin{pmatrix} -\frac{1}{\sqrt{2}} & \frac{1}{\sqrt{6}} & \frac{1}{\sqrt{3}} \\ \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{6}} & \frac{1}{\sqrt{3}} \\ 0 & -\frac{2}{\sqrt{6}} & \frac{1}{\sqrt{3}} \end{pmatrix} \in \mathcal{O}_3(\mathbb{R})$$

und der Diagonalmatrix

$$D = \operatorname{diag}(\lambda_1, \lambda_1, \lambda_2) = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 4 \end{pmatrix} \in \mathbb{R}^{3 \times 3}$$

erhält man somit, daß $P^{\mathsf{T}}AP = D$ Diagonalgestalt besitzt.

c) Für

$$F = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 2 \end{pmatrix} \in \mathbb{R}^{3 \times 3}$$

gilt $F^2 = D$, und für

$$B = PFP^{\top}$$

$$= \frac{1}{\sqrt{6}} \begin{pmatrix} -\sqrt{3} & 1 & \sqrt{2} \\ \sqrt{3} & 1 & \sqrt{2} \\ 0 & -2 & \sqrt{2} \end{pmatrix} \cdot \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 2 \end{pmatrix} \cdot \frac{1}{\sqrt{6}} \begin{pmatrix} -\sqrt{3} & \sqrt{3} & 0 \\ 1 & 1 & -2 \\ \sqrt{2} & \sqrt{2} & \sqrt{2} \end{pmatrix}$$

$$= \frac{1}{6} \cdot \begin{pmatrix} -\sqrt{3} & 1 & 2\sqrt{2} \\ \sqrt{3} & 1 & 2\sqrt{2} \\ 0 & -2 & 2\sqrt{2} \end{pmatrix} \cdot \begin{pmatrix} -\sqrt{3} & \sqrt{3} & 0 \\ 1 & 1 & -2 \\ \sqrt{2} & \sqrt{2} & \sqrt{2} \end{pmatrix}$$

$$= \frac{1}{6} \cdot \begin{pmatrix} 8 & 2 & 2 \\ 2 & 8 & 2 \\ 2 & 2 & 8 \end{pmatrix} = \begin{pmatrix} \frac{4}{3} & \frac{1}{3} & \frac{1}{3} \\ \frac{1}{3} & \frac{4}{3} & \frac{1}{3} \\ \frac{1}{3} & \frac{1}{3} & \frac{4}{3} \end{pmatrix} \in \mathbb{R}^{3 \times 3}$$

erhält man damit

$$B^2 = (PFP^{\top})^2 = PF^2P^{\top} = PDP^{\top} = P(P^{\top}AP)P^{\top} = A.$$

32. a) Zunächst steht $u_2 = \begin{pmatrix} 1 \\ -1 \\ 0 \end{pmatrix}$ auf dem gegebenen Vektor $u_1 = \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix} \in \mathbb{R}^3$ wegen $u_1 \circ u_2 = 0$ senkrecht, so daß mit

$$u_3 = u_1 \times u_2 = \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix} \times \begin{pmatrix} 1 \\ -1 \\ 0 \end{pmatrix} = \begin{pmatrix} 1 \\ 1 \\ -2 \end{pmatrix} \in \mathbb{R}^3$$

die Vektoren u_1, u_2, u_3 eine Orthogonalbasis von \mathbb{R}^3 bilden.

b) Eine Matrix $U \in \mathbb{R}^{3\times 3}$ bzw. die durch diese gegebene lineare Abbildung $f: \mathbb{R}^3 \to \mathbb{R}^3$, $f(x) = U \cdot x$, besitzt genau dann u_1 als Eigenvektor zum Eigenwert $\lambda = 1$ und u_2 , u_3 als Eigenvektoren zum Eigenwert $\mu = -2$, wenn

(*)
$$U \cdot u_1 = \lambda \cdot u_1$$
, $U \cdot u_2 = \mu \cdot u_2$ und $U \cdot u_3 = \mu \cdot u_3$

bzw.

$$(**)$$
 $f(u_1) = \lambda \cdot u_1, \quad f(u_2) = \mu \cdot u_2 \quad \text{und} \quad f(u_3) = \mu \cdot u_3$

gilt. Da gemäß a) die Vektoren u_1 , u_2 , u_3 insbesondere eine Basis von \mathbb{R}^3 bilden, gibt es nach dem Prinzip der linearen Fortsetzung genau eine lineare Abbildung $f: \mathbb{R}^3 \to \mathbb{R}^3$ mit (**) und damit genau eine Matrix $U \in \mathbb{R}^{3\times 3}$ mit (*).

- c) Für die explizite Berechnung der Matrix $U \in \mathbb{R}^{3\times 3}$ bieten sich die folgenden beide Wege an:
 - Gemäß (*) ergibt sich

$$U \cdot (u_1, u_2, u_3) = (U \cdot u_1, \ U \cdot u_2, \ U \cdot u_3) = (\lambda u_1, \ \mu u_2, \ \mu u_3),$$

also $U \cdot B = C$ mit

$$B = (u_1, u_2, u_3) = \begin{pmatrix} 1 & 1 & 1 \\ 1 & -1 & 1 \\ 1 & 0 & -2 \end{pmatrix} \in \mathbb{R}^{3 \times 3}$$

und

$$C = (\lambda u_1, \ \mu u_2, \ \mu u_3) = \begin{pmatrix} 1 & -2 & -2 \\ 1 & 2 & -2 \\ 1 & 0 & 4 \end{pmatrix}.$$

Da u_1, u_2, u_3 eine Basis von \mathbb{R}^3 bilden, ist $B = (u_1, u_2, u_3)$ invertierbar, und es ist

$$B^{-1} = \frac{1}{\det(B)} \cdot \widetilde{B} = \frac{1}{6} \begin{pmatrix} 2 & 2 & 2\\ 3 & -3 & 0\\ 1 & 1 & -2 \end{pmatrix},$$

woraus sich dann

$$U = C \cdot B^{-1} = \begin{pmatrix} 1 & -2 & -2 \\ 1 & 2 & -2 \\ 1 & 0 & 4 \end{pmatrix} \cdot \frac{1}{6} \begin{pmatrix} 2 & 2 & 2 \\ 3 & -3 & 0 \\ 1 & 1 & -2 \end{pmatrix} = \begin{pmatrix} -1 & 1 & 1 \\ 1 & -1 & 1 \\ 1 & 1 & -1 \end{pmatrix}$$

ergibt.

• Die normierten Vektoren

$$\frac{u_1}{\|u_1\|} = \frac{1}{\sqrt{3}} \begin{pmatrix} 1\\1\\1 \end{pmatrix}, \quad \frac{u_2}{\|u_2\|} = \frac{1}{\sqrt{2}} \begin{pmatrix} 1\\-1\\0 \end{pmatrix}, \quad \frac{u_3}{\|u_3\|} = \frac{1}{\sqrt{6}} \begin{pmatrix} 1\\1\\-2 \end{pmatrix}$$

bilden eine Orthonormalbasis des euklidischen \mathbb{R}^3 aus Eigenvektoren von U zu den Eigenwerten $\lambda=1,\,\mu=-2$ und $\mu=-2$, so daß sich mit der orthogonalen Matrix

$$P = \left(\frac{u_1}{\|u_1\|}, \frac{u_2}{\|u_2\|}, \frac{u_3}{\|u_3\|}\right) = \begin{pmatrix} \frac{1}{\sqrt{3}} & \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{6}} \\ \frac{1}{\sqrt{3}} & -\frac{1}{\sqrt{2}} & \frac{1}{\sqrt{6}} \\ \frac{1}{\sqrt{3}} & 0 & -\frac{2}{\sqrt{6}} \end{pmatrix} \in \mathcal{O}_3(\mathbb{R})$$

und der Diagonalmatrix

$$D = \operatorname{diag}(\lambda, \ \mu, \ \mu) = \begin{pmatrix} 1 & 0 & 0 \\ 0 & -2 & 0 \\ 0 & 0 & -2 \end{pmatrix} \in \mathbb{R}^{3 \times 3}$$

dann

$$D = P^{\top}UP \quad \text{bzw.} \quad U = PDP^{\top} =$$

$$= \frac{1}{\sqrt{6}} \begin{pmatrix} \sqrt{2} & \sqrt{3} & 1\\ \sqrt{2} & -\sqrt{3} & 1\\ \sqrt{2} & 0 & -2 \end{pmatrix} \cdot \begin{pmatrix} 1 & 0 & 0\\ 0 & -2 & 0\\ 0 & 0 & -2 \end{pmatrix} \cdot P^{\top}$$

$$= \frac{1}{\sqrt{6}} \begin{pmatrix} \sqrt{2} & -2\sqrt{3} & -2\\ \sqrt{2} & 2\sqrt{3} & -2\\ \sqrt{2} & 0 & 4 \end{pmatrix} \cdot \frac{1}{\sqrt{6}} \begin{pmatrix} \sqrt{2} & \sqrt{2} & \sqrt{2}\\ \sqrt{3} & -\sqrt{3} & 0\\ 1 & 1 & -2 \end{pmatrix} =$$

$$= \frac{1}{6} \cdot \begin{pmatrix} -6 & 6 & 6\\ 6 & -6 & 6\\ 6 & 6 & -6 \end{pmatrix} = \begin{pmatrix} -1 & 1 & 1\\ 1 & -1 & 1\\ 1 & 1 & -1 \end{pmatrix}$$

ergibt.