Dr. E. Schörner

Übungen zur Vorlesung "Lineare Algebra und analytische Geometrie II"

- 41. (Staatsexamensaufgabe Frühjahr 2013). Man betrachte den euklidischen (\mathbb{R}^3 , \circ).
 - a) Man zeige, daß es genau zwei orthogonale 3×3 -Matrizen der Form

$$S = \frac{1}{3} \begin{pmatrix} 2 & 1 & s_{13} \\ 1 & 2 & s_{23} \\ 2 & s_{32} & s_{33} \end{pmatrix} \in \mathbb{R}^{3 \times 3}$$

mit geeigneten s_{13} , s_{23} , s_{32} , $s_{33} \in \mathbb{R}$ gibt, und gebe diese beiden Matrizen explizit an.

- b) Für welche der beiden in a) ermittelten Matrizen $S \in \mathbb{R}^{3\times3}$ beschreibt die lineare Abbildung $\ell_S : \mathbb{R}^3 \to \mathbb{R}^3$, $\ell_S(x) = S \cdot x$, eine Drehung? (Begründung!). Man bestimme die Drehachse sowie den Cosinus des Drehwinkels.
- c) Für welche der beiden in a) ermittelten Matrizen $S \in \mathbb{R}^{3\times 3}$ beschreibt die lineare Abbildung $\ell_S : \mathbb{R}^3 \to \mathbb{R}^3$, $\ell_S(x) = S \cdot x$, eine Ebenenspiegelung? (Begründung!). Man bestimme eine Gleichung für die Spiegelungsebene.
- 42. (Staatsexamensaufgabe Frühjahr 2008). Der euklidische \mathbb{R}^3 sei mit den Koordinaten x_1, x_2, x_3 sowie dem Standardskalarprodukt versehen.
 - a) Man zeige, daß die lineare Abbildung

$$s_1: \mathbb{R}^3 \to \mathbb{R}^3, \ s_1(x) = S_1 \cdot x \quad \text{mit} \quad S_1 = \frac{1}{3} \cdot \begin{pmatrix} 2 & -1 & 2 \\ -1 & 2 & 2 \\ 2 & 2 & -1 \end{pmatrix} \in \mathbb{R}^{3 \times 3}$$

eine Spiegelung an einer Ebene $E_1 \subseteq \mathbb{R}^3$ beschreibt, und gebe eine Gleichung für die Ebene E_1 an.

b) Man bestimme eine Matrix $S_2 \in \mathbb{R}^{3 \times 3}$, so daß die lineare Abbildung

$$s_2: \mathbb{R}^3 \to \mathbb{R}^3, \ s_2(x) = S_2 \cdot x,$$

eine Spiegelung an der Ebene $E_2: x_1 = x_3$ ist.

c) Für die Komposition $d = s_2 \circ s_1$ der beiden Ebenenspiegelungen aus a) und b) zeige man

$$d(x) = S \cdot x$$
 mit $S = \frac{1}{3} \cdot \begin{pmatrix} 2 & 2 & -1 \\ -1 & 2 & 2 \\ 2 & -1 & 2 \end{pmatrix} \in \mathbb{R}^{3 \times 3}$.

Man begründe, daß d eine Drehung ist, und bestimme die Drehachse sowie den Cosinus des Drehwinkels von d.

43. (Staatsexamensaufgabe Herbst 2017). Im euklidischen Vektorraum \mathbb{R}^3 , versehen mit dem Standardskalarprodukt, sind die Vektoren

$$v_1 = \begin{pmatrix} 2\\2\\1 \end{pmatrix} \quad \text{und} \quad v_2 = \begin{pmatrix} 0\\1\\1 \end{pmatrix} \in \mathbb{R}^3$$

gegeben.

a) Man bestimme eine Orthonormalbasis b_1, b_2, b_3 von \mathbb{R}^3 mit

$$\langle b_1 \rangle = \langle v_1 \rangle$$
 und $\langle b_1, b_2 \rangle = \langle v_1, v_2 \rangle$.

b) Man bestimme eine Matrix $D \in \mathbb{R}^{3\times 3}$, so daß die lineare Abbildung

$$f_D: \mathbb{R}^3 \to \mathbb{R}^3, \quad f_D(x) = Dx,$$

eine Drehung um den Winkel φ mit $\cos \varphi = \frac{3}{5}$ mit der Drehachse $\mathbb{R} \cdot v_1$ ist.

- 44. (Staatsexamensaufgabe Frühjahr 2014). Im euklidischen (\mathbb{R}^3 , \circ) betrachte man eine Drehung d mit der Drehachse $\mathbb{R} \cdot \begin{pmatrix} 1 \\ -1 \\ 1 \end{pmatrix}$ und dem Drehwinkel $\varphi = \frac{\pi}{3}$.
 - a) Man bestimme eine Orthonormalbasis b_1, b_2, b_3 von (\mathbb{R}^3, \circ) , so daß

$$M = \begin{pmatrix} \frac{1}{2} & -\frac{1}{2}\sqrt{3} & 0\\ \frac{1}{2}\sqrt{3} & \frac{1}{2} & 0\\ 0 & 0 & 1 \end{pmatrix} \in \mathbb{R}^{3\times3}$$

die darstellende Matrix von d bezüglich b_1 , b_2 , b_3 ist.

- b) Man bestimme die darstellende Matrix von d bezüglich der Standardbasis e_1, e_2, e_3 von \mathbb{R}^3 .
- c) Man entscheide, ob d bezüglich einer Basis c_1 , c_2 , c_3 von \mathbb{R}^3 eine darstellende Matrix in Diagonalgestalt besitzt, und begründe die Entscheidung.

Abgabe bis Freitag, den 31. Juli 2020, 16⁰⁰ Uhr (Kästen vor der Bibliothek).