Dr. E. Schörner

Tutorium zur Vorlesung "Lineare Algebra und analytische Geometrie I"

- 37. (Staatsexamensaufgabe Frühjahr 2000). Sei b_1 , b_2 , b_3 Vektoren eines reellen Vektorraums V. Man zeige:
 - a) Die Vektoren $v_1 = b_1 + b_2 + b_3$, $v_2 = b_1 + 2b_2 + 3b_3$, $v_3 = 2b_1 + 3b_2 + b_3$ und $v_4 = 3b_1 + b_2 + 2b_3$ sind linear abhängig.
 - b) Ist b_1 , b_2 , b_3 eine Basis von V, so sind die Vektoren v_1 , v_2 , v_3 linear unabhängig.
- 38. Gegeben sind die beiden Matrizen

$$A = \begin{pmatrix} 1 & 2 & -2 & -1 \\ 1 & 1 & -2 & 0 \\ 1 & -1 & -2 & 2 \end{pmatrix} \quad \text{und} \quad B = \begin{pmatrix} 1 & -1 & 1 & -1 \\ 1 & -2 & 3 & -2 \\ 1 & 1 & -3 & 1 \end{pmatrix} \in \mathbb{R}^{3 \times 4}$$

sowie die Unterräume $U = \{x \in \mathbb{R}^4 \mid A \cdot x = 0\}$ und $W = \{x \in \mathbb{R}^4 \mid B \cdot x = 0\}$.

- a) Man bestimme Basen von U und W sowie ein $v \in \mathbb{R}^4$ mit $U \cap W = \mathbb{R} \cdot v$.
- b) Man ergänze v zu Basen von U und W und gebe eine Basis von U+W an.
- 39. (Staatsexamensaufgabe Herbst 2008).
 - a) Es seien W_1 und W_2 Untervektorräume eines reellen Vektorraums V. Wie lautet die Dimensionsformel für Summe W_1+W_2 und Durchschnitt $W_1\cap W_2$?
 - b) Welche Dimension kann $W_1 \cap W_2$ haben, wenn dim $W_1 = \dim W_2 = 3$ und $V = \mathbb{R}^5$ ist? Man belege jeden möglichen Wert von dim $(W_1 \cap W_2)$ durch ein Beispiel.
- 40. Man zeige, daß

$$U = \left\{ \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in \mathbb{R}^{2 \times 2} \mid a + b - c = 0 \right\}$$

ein Untervektorraum von $\mathbb{R}^{2\times 2}$ ist, und berechne die Dimension von U. Ferner bestimme man einen zu U komplementären Untervektorraum W in $\mathbb{R}^{2\times 2}$.