Dr. E. Schörner

Übungen zur Vorlesung "Lineare Algebra und analytische Geometrie I"

45. (Staatsexamensaufgabe Herbst 2013). In Abhängigkeit von $\alpha \in \mathbb{R}$ sei

$$A_{\alpha} = \begin{pmatrix} \alpha & 0 & 0 & 1 - \alpha \\ 1 & 1 & 0 & 0 \\ 1 & 1 & -1 & 0 \\ 1 & 1 & -1 & -1 \end{pmatrix} \in \mathbb{R}^{4 \times 4} \quad \text{sowie} \quad b = \begin{pmatrix} 3 \\ -1 \\ -2 \\ -4 \end{pmatrix} \in \mathbb{R}^4$$

gegeben; ferner sei $B_{\alpha} = A_{\alpha} A_{\alpha}^{\top} \in \mathbb{R}^{4 \times 4}$.

- a) Für welche $\alpha \in \mathbb{R}$ hat die Gleichung $B_{\alpha} x = b$ eine eindeutige Lösung?
- b) Man bestimme für $\alpha = 1$ die Lösung der Gleichung $B_1 x = b$.
- 46. a) Für alle $A \in \mathbb{R}^{m \times n}$ und $B \in \mathbb{R}^{m \times n}$ zeige man

$$\operatorname{Rang}(A+B) < \operatorname{Rang}(A) + \operatorname{Rang}(B)$$
.

b) Für alle $A \in \mathbb{R}^{m \times n}$ und $B \in \mathbb{R}^{n \times p}$ zeige man

$$\operatorname{Rang}(A B) \le \min \left\{ \operatorname{Rang}(A), \operatorname{Rang}(B) \right\}.$$

47. Gegeben sei die Abbildung

$$f: \text{Pol}_3(\mathbb{R}) \to \text{Pol}_2(\mathbb{R}), \quad a_3 X^3 + a_2 X^2 + a_1 X + a_0 \mapsto 3 \, a_3 X^2 + 2 \, a_2 X + a_1.$$

- a) Man zeige, daß f eine lineare Abbildung ist.
- b) Man untersuche f auf Injektivität und Surjektivität.
- 48. Seien V und W reelle Vektorräume sowie $f:V\to W$ eine lineare Abbildung.
 - a) Für alle $v_1, \ldots, v_n \in V$ zeige man:

$$f(v_1), \ldots, f(v_n)$$
 linear unabhängig $\implies v_1, \ldots, v_n$ linear unabhängig.

- b) Man formuliere die Kontraposition zu a) und entscheide, ob diese allgemeingültig ist.
- c) Unter welcher Voraussetzung ist auch die Umkehrung zu a) gültig?

Abgabe bis Montag, den 27. Januar 2020, 12⁰⁰ Uhr (Kästen vor der Bibliothek).