Dr. E. Schörner

Tutorium zur Vorlesung "Differential– und Integralrechnung II"

- 45. (Staatsexamensaufgabe Frühjahr 2009). Sei r > 0. Man berechne die Punkte auf der Parabel $y = x^2$ mit dem kürzesten Abstand zu dem Punkt (0, r) auf der y-Achse. Für welche r > 0 ist (0, 0) der Punkt mit dem kürzesten Abstand?
- 46. Man untersuche die folgenden Punktfolgen in \mathbb{R}^2 auf Konvergenz und gebe gegebenenfalls ihren Grenzwert an:
 - a) $(a_k)_{k \in \mathbb{N}_0}$ mit $a_k = \left(\frac{2k}{k+1}; \frac{k^2}{k^2+3}\right)$ für alle $k \in \mathbb{N}_0$.
 - b) $(a_k)_{k \in \mathbb{N}_0}$ mit $a_k = \left(\cos \frac{k\pi}{2}; \sin \frac{k\pi}{2}\right)$ für alle $k \in \mathbb{N}_0$.
 - c) $(a_k)_{k\in\mathbb{N}}$ mit $a_k = \left(\left(1 + \frac{2}{k}\right)^k; \left(1 + \frac{1}{k}\right)^{2k}\right)$ für alle $k \in \mathbb{N}$.
 - d) $(a_k)_{k\in\mathbb{N}}$ mit $a_k = \left(\sqrt[k]{k}; \sqrt{k+1} + (-1)^k \sqrt{k}\right)$ für alle $k \in \mathbb{N}$.

Welche der Folgen besitzen Häufungspunkte?

47. (Staatsexamensaufgabe Frühjahr 2001). Sei Γ die durch die Parametrisierung

$$\gamma: \left[-\frac{1}{\sqrt{3}}, \frac{1}{\sqrt{3}} \right] \to \mathbb{R}^2, \quad \gamma(t) = (x(t), y(t)) = (3t^2 - 1, 3t^3 - t),$$

gegebene geschlossene Kurve in der (x,y)–Ebene. Man berechne die Bogenlänge von $\Gamma.$

48. Gegeben sei die Kurve

$$f: [0, 2\pi] \to \mathbb{R}^2, \quad f(t) = ((1 - \cos t) \cos t, (1 - \cos t) \sin t).$$

- a) Man berechne den f(t) und f'(t) für $t \in \left\{0, \frac{\pi}{3}, \frac{\pi}{2}, \frac{2\pi}{3}, \pi, \frac{4\pi}{3}, \frac{3\pi}{2}, \frac{5\pi}{3}, 2\pi\right\}$.
- b) Man skizziere $f([0, 2\pi])$ für die Kardioide (Herzkurve) genannte Kurve f.
- c) Man berechne ihre Bogenlänge. (Hinweis: $1 \cos t = 2 \sin^2 \frac{t}{2}$.)