Tutorium zur Vorlesung "Differential— und Integralrechnung II"

- 21. a) Sei $g: D \to \mathbb{R}$ eine stetig differenzierbare Funktion auf dem Intervall D mit g(x) > 0 für alle $x \in D$. Man ermittle mit Hilfe der Ableitung der Funktion $F: D \to \mathbb{R}, \ F(x) = \sqrt{g(x)},$ das unbestimmte Integral $\int \frac{g'(x)}{\sqrt{g(x)}} \, dx$.
 - b) Man bestimme $\int \frac{e^x}{\sqrt{1+e^x}} dx$, $\int \frac{x}{\sqrt{1+x^2}} dx$ und $\int \frac{x}{\sqrt{1-x^2}} dx$.
 - c) Man bestimme $\int \arcsin x \, dx$ mit Hilfe partieller Integration.
- 22. a) (Staatsexamensaufgabe Frühjahr 1995). Man berechne $\int_0^1 \frac{1}{(x+1)(x+2)} dx$ mit Hilfe von Partialbruchzerlegung.
 - b) Man zeige, daß die Reihe $\sum_{n=0}^{\infty} \frac{1}{(n+1)(n+2)}$ konvergiert, und bestimme ihre Summe.
- 23. a) Man bestimme das unbestimmte Integral $\int x \sin x \, dx$.
 - b) Man berechne das bestimmte Integral $\int_0^{\pi} x^2 \cos x \, dx$.
- 24. (Staatsexamensaufgabe Frühjahr 2012). Gegeben sei die Funktion

$$f:]-2, +\infty[\to \mathbb{R}, \quad f(x) = (x-1) \cdot \ln(x+2).$$

Man berechne den Flächeninhalt der Fläche, die von der x-Achse, dem Graphen G_f und den beiden Nullstellen von f eingeschlossen wird.