Dr. E. Schörner

Tutorium zur Vorlesung "Differential— und Integralrechnung II"

- 9. Gegeben sei die Funktion $f: \mathbb{R} \to \mathbb{R}$, $f(x) = 3x(x-1)^2$.
 - a) Man bestimme die Nullstellen sowie die Extremstellen von f. In welchem Bereich verläuft der Graph G_f oberhalb bzw. unterhalb der x-Achse?
 - b) Man bestimme eine Stammfunktion von f.
 - c) Man bestimme die bestimmten Integrale $\int_{-1}^{1} f(x) dx$ und $\int_{-1}^{1} |f(x)| dx$ und interpretiere die Werte mit Hilfe geeigneter Flächenstücke.
- 10. (Staatsexamensaufgabe Frühjahr 2008). Gegeben sei die Menge

$$M = \{(x, y) \in \mathbb{R}^2 \mid x \ge 0 \text{ und } e^x - 1 \le y \le e^{-x} + 1\}.$$

a) Man zeige, daß der rechte Eckpunkt von M, also der Punkt (x_r, y_r) mit

$$y_r = e^{-x_r} + 1 = e^{x_r} - 1,$$

die Koordinaten $x_r = \ln (1 + \sqrt{2})$ und $y_r = \sqrt{2}$ besitzt.

- b) Man berechne den Flächeninhalt von M.
- 11. (Staatsexamensaufgabe Frühjahr 2001). Man gebe Beispiele für Funktionen mit folgenden Eigenschaften an oder begründe, daß keine solche Funktion existiert.
 - a) $f_1: [-1;1] \to \mathbb{R}$ ist integrierbar, aber nicht stetig.
 - b) $f_2: [-1;1] \to \mathbb{R}$ ist stetig, aber nicht beschränkt.
 - c) $f_3: \mathbb{R} \to \mathbb{R}$ ist stetig, aber nicht differenzierbar.
 - d) $f_4: \mathbb{R} \to \mathbb{R}$ ist differenzierbar, aber f'_4 ist nicht stetig.
- 12. (Staatsexamensaufgabe Herbst 2005). Gegeben sei die Funktion

$$h: \mathbb{R} \to \mathbb{R}, \quad h(t) = \cos t \cdot \arctan t.$$

Man zeige, daß für jedes $x \in \mathbb{R}$ das Integral $\int_0^x h(t) dt$ existiert und die Funktion

$$F: \mathbb{R} \to \mathbb{R}, \quad F(x) = \int_0^x h(t) dt$$

an der Stelle 0 ein lokales Minimum hat.