Dr. E. Schörner

Präsenzübung zur Vorlesung "Differential— und Integralrechnung II"

- 1. Wiederholung zentraler Begriffe.
 - a) Sei $\emptyset \neq D \subseteq \mathbb{R}$ ein Intervall und $f:D \to \mathbb{R}$ eine differenzierbare Funktion. Man erläutere den Zusammenhang zwischen der ersten Ableitung f' und dem Monotonieverhalten von f. Unter welchen Voraussetzungen ist f eine konstante Funktion?
 - b) Man formuliere die "Regeln von de l'Hospital".
- 2. a) Man zeige, daß die Funktion

$$f: \mathbb{R} \setminus \{0\} \to \mathbb{R}, \quad f(x) = \ln x^2 + \ln \frac{2}{x^2},$$

konstant ist.

b) Man zeige, daß die Funktion

$$g: \mathbb{R} \to \mathbb{R}, \quad g(x) = \frac{4 e^x}{(e^x + 1)^2},$$

auf $]-\infty,0]$ bzw. auf $[0,\infty[$ streng monoton wachsend bzw. fallend ist.

3. a) Man bestimme folgende Grenzwerte:

(i)
$$\lim_{x \to 0} \frac{e^x - e^{-x}}{\sin x}$$
 (ii) $\lim_{x \to 0} \frac{\sqrt{1 + \sin x} - \cos x}{\arcsin x}$ (iii) $\lim_{x \to 1} \frac{x^x - x}{1 - x + \ln x}$.

b) Man bestimme folgende Grenzwerte:

(i)
$$\lim_{x \to \infty} \frac{e^x}{\ln x}$$
 (ii) $\lim_{x \to \frac{\pi}{2} +} \frac{\tan x}{\ln \left(x - \frac{\pi}{2}\right)}$ (iii) $\lim_{x \to \infty} \frac{e^x - e^{-x}}{e^x + e^{-x}}$.