Klausur zur Vorlesung "Differential– und Integralrechnung I"

— Lösungsvorschlag —

- 1. a) – Eine Folge $(a_n)_{n\in\mathbb{N}}$ reeller Zahlen heißt nach oben beschränkt, wenn es ein $K \in \mathbb{R}$ gibt, so daß $a_n \leq K$ für alle $n \in \mathbb{N}$ gilt.
 - Eine Folge $(a_n)_{n\in\mathbb{N}}$ reeller Zahlen heißt monoton wachsend, wenn $a_n \leq a_{n+1}$ für alle $n \in \mathbb{N}$ gilt.
 - Die reelle Zahl $a \in \mathbb{R}$ heißt Grenzwert von $(a_n)_{n \in \mathbb{N}}$, wenn es zu jedem $\varepsilon > 0$ ein $n_0 \in \mathbb{N}$ gibt, so daß für alle $n \geq n_0$ dann $|a_n a| < \varepsilon$ gilt.
 - Für eine monoton wachsende Folge $(a_n)_{n\in\mathbb{N}}$ reeller Zahlen gilt:
 - Ist $(a_n)_{n\in\mathbb{N}}$ beschränkt, so konvergiert $(a_n)_{n\in\mathbb{N}}$ gegen das Supremum der Folgenglieder sup $\{a_n \mid n\in\mathbb{N}\}.$
 - Ist $(a_n)_{n\in\mathbb{N}}$ unbeschränkt, so divergiert $(a_n)_{n\in\mathbb{N}}$ bestimmt gegen +∞.
 - b) In Abhängigkeit von den Parametern 0 < s < t ist die durch $a_1 = s$ und $a_{n+1} = \sqrt{\frac{a_n^2 + s \cdot t^2}{1 + s}}$ für alle $n \in \mathbb{N}$ rekursiv definierte Folge $(a_n)_{n \in \mathbb{N}}$ gegeben.
 - Wir zeigen $a_n \leq t$ für alle $n \in \mathbb{N}$ durch vollständige Induktion:
 - Für "n = 1" ist $a_1 = s$, wegen $s \le t$ also insbesondere $a_1 \le t$.
 - Für " $n \to n + 1$ " ist $a_n \le t$, wegen $a_n \ge 0$ also $a_n^2 \le t^2$, und mit den Monotoniegesetzen von Addition und Multiplikation (es ist 1 + s > 0) sowie der Monotonie der Quadratwurzel ergibt sich

$$a_{n+1} = \sqrt{\frac{a_n^2 + s \cdot t^2}{1+s}} \le \sqrt{\frac{t^2 + s \cdot t^2}{1+s}} = \sqrt{\frac{t^2 \cdot (1+s)}{1+s}} = \sqrt{t^2} \underset{t>0}{=} t.$$

Damit ist die Folge $(a_n)_{n\in\mathbb{N}}$ durch t nach oben beschränkt.

• Für alle $n \in \mathbb{N}$ gilt $a_n \leq t$, wegen $a_n \geq 0$ also $a_n^2 \leq t^2$, und mit den Monotoniegesetzen von Addition und Multiplikation (es ist 1 + s > 0) sowie der Monotonie der Quadratwurzel ergibt sich

$$a_{n+1} = \sqrt{\frac{a_n^2 + s \cdot t^2}{1+s}} \ge \sqrt{\frac{a_n^2 + s \cdot a_n^2}{1+s}} = \sqrt{\frac{a_n^2 \cdot (1+s)}{1+s}} = \sqrt{a_n^2} = a_n$$

und damit $a_{n+1} \geq a_n$. Damit ist die Folge $(a_n)_{n \in \mathbb{N}}$ monoton wachsend.

• Die Folge $(a_n)_{n\in\mathbb{N}}$ ist monoton wachsend und nach oben beschränkt, also konvergent; es sei $a=\lim_{n\to\infty}a_n$. Wegen $a_n\geq 0$ für alle $n\in\mathbb{N}$ ist $a\geq 0$, und unter Verwendung der Rekursionsvorschrift erhält man

$$a = \lim_{n \to \infty} a_{n+1} = \lim_{n \to \infty} \sqrt{\frac{a_n^2 + s \cdot t^2}{1 + s}} = \sqrt{\frac{a^2 + s \cdot t^2}{1 + s}},$$

woraus sich zunächst

$$a^2 = \frac{a^2 + s \cdot t^2}{1 + s}$$
, also $(1 + s) \cdot a^2 = a^2 + s \cdot t^2$ bzw. $s \cdot a^2 = s \cdot t^2$,

wegen $s \neq 0$ dann $a^2 = t^2$, und wegen $a \geq 0$ schließlich a = t ergibt.

2. a) • Für $p \leq 2$ gilt

$$\left|\frac{n^p}{n^4+1}\right| = \frac{n^p}{n^4+1} \leq \frac{n^2}{n^4+1} \leq \frac{n^2}{n^4+1} \leq \frac{1}{n^2} \quad \text{für alle} \quad n \in \mathbb{N}.$$

Damit besitzt die Reihe $\sum_{n=1}^{\infty} \frac{n^p}{n^4+1}$ die konvergente Majorante $\sum_{n=1}^{\infty} \frac{1}{n^2}$ und ist folglich nach dem Majorantenkriterium selbst konvergent.

• Für p > 3 gilt

$$\frac{n^p}{n^4+1} \underset{p>3}{\geq} \frac{n^3}{n^4+1} \ge \frac{n^3}{n^4+n^4} = \frac{n^3}{2 \, n^4} = \frac{1}{2 \, n} \quad \text{für alle} \quad n \in \mathbb{N}.$$

Mit der harmonischen Reihe $\sum_{n=1}^{\infty} \frac{1}{n}$ ist auch die Reihe $\sum_{n=1}^{\infty} \frac{1}{2n}$ divergent; damit besitzt die Reihe $\sum_{n=1}^{\infty} \frac{n^p}{n^4+1}$ die divergente Minorante $\sum_{n=1}^{\infty} \frac{1}{2n}$ und ist folglich nach dem Minorantenkriterium selbst divergent.

b) Die Reihe $\sum_{n=0}^{\infty} (1 - \ln x)^n$ besitzt die Gestalt der geometrischen Reihe $\sum_{n=0}^{\infty} q^n$ mit $q = 1 - \ln x$. Diese konvergiert genau dann, wenn |q| < 1 gilt, wegen

$$|1 - \ln x| < 1 \iff -1 < 1 - \ln x < 1 \iff$$

$$\iff -2 < -\ln x < 0 \iff 0 < \ln x < 2 \iff 1 < x < e^2$$

also genau für $x \in]1, e^2[$, und in diesem Fall gilt für die Summe

$$\sum_{n=0}^{\infty} (1 - \ln x)^n = \sum_{n=0}^{\infty} q^n = \frac{1}{1 - q} = \frac{1}{1 - (1 - \ln x)} = \frac{1}{\ln x}.$$

c) Für alle $x \in \mathbb{R}$ gilt

$$\sqrt[n]{\frac{\left(\cos x\right)^n}{n}} = \sqrt[n]{\frac{\left|\cos x\right|^n}{n}} = \frac{\left|\cos x\right|}{\sqrt[n]{n}} \xrightarrow[n \to \infty]{} \frac{\left|\cos x\right|}{1} = \left|\cos x\right| \le 1;$$

damit ist die Reihe nach dem Wurzelkriterium für $|\cos x| < 1$, also für $x \in \mathbb{R} \setminus \{k \cdot \pi \mid k \in \mathbb{Z}\}$ (absolut) konvergent. Ferner gilt:

• Für $x=(2\ell+1)\cdot\pi$ mit $\ell\in\mathbb{Z}$ gilt $\cos x=-1$, und damit ist die Reihe $\sum_{n=1}^{\infty}\frac{(\cos x)^n}{n}=\sum_{n=1}^{\infty}\frac{(-1)^n}{n}$ als alternierende harmonische Reihe konvergent.

• Für $x = 2\ell \cdot \pi$ mit $\ell \in \mathbb{Z}$ gilt $\cos x = 1$, und damit ist die Reihe $\sum_{n=0}^{\infty} \frac{(\cos x)^n}{n} = \sum_{n=0}^{\infty} \frac{1}{n}$ als harmonische Reihe divergent.

Insgesamt ist die Reihe genau für alle $x \in \mathbb{R} \setminus \{2\ell \cdot \pi \mid \ell \in \mathbb{Z}\}$ konvergent.

- a) Wir betrachten eine Funktion $f: D \to \mathbb{R}$ auf $\emptyset \neq D \subseteq \mathbb{R}$ sowie $a \in D$.
 - Eine Funktion f heißt stetig im Punkt a, wenn für alle Folgen
 - $(x_n)_{n\in\mathbb{N}}$ in D mit $\lim_{n\to\infty} x_n = a$ stets $\lim_{n\to\infty} f(x_n) = f(a)$ gilt.

 Eine Funktion f heißt differenzierbar im Punkt $a\in D$, wenn der Grenzwert des Differenzenquotienten $\frac{f(x)-f(a)}{x-a}$ für $x\to a$ (im eigentliche Sinne) existiert.
 - Eine Funktion f heißt differenzierbar, wenn f in jedem Punkt $a \in D$ differenzierbar ist.
 - Eine Funktion f heißt stetig differenzierbar, wenn f differenzierbar und $f': D \to \mathbb{R}$ stetig ist.
 - b) Die gegebene Funktion

$$f: [0,1[\to \mathbb{R}, \quad f(x) = \begin{cases} x \cdot \frac{\sin x}{\ln x}, & \text{falls } x \neq 0, \\ 0, & \text{falls } x = 0, \end{cases}$$

ist zunächst in allen Punkten $x \neq 0$ nach der Produktregel und (für den zweiten Faktor) nach der Quotientenregel differenzierbar mit

$$f'(x) = 1 \cdot \frac{\sin x}{\ln x} + x \cdot \left(\frac{\cos x \cdot \ln x - \sin x \cdot \frac{1}{x}}{(\ln x)^2}\right) = \frac{\sin x}{\ln x} + \frac{x \cdot \cos x}{\ln x} - \frac{\sin x}{(\ln x)^2}.$$

Für alle $x \neq 0$ gilt ferner

$$f'(0) = \lim_{x \to 0} \frac{f(x) - f(0)}{x - 0} = \lim_{x \to 0} \frac{x \cdot \frac{\sin x}{\ln x} - 0}{x - 0} = \lim_{x \to 0} \underbrace{\frac{\int_{-\infty}^{\infty} \frac{1}{\sin x}}{\frac{1}{\sin x}}}_{-\infty} = 0,$$

und damit ergibt sich insgesamt

$$f': [0,1[\to \mathbb{R}, \quad f'(x) = \begin{cases} \frac{\sin x}{\ln x} + \frac{x \cdot \cos x}{\ln x} - \frac{\sin x}{(\ln x)^2}, & \text{falls } x \neq 0, \\ 0, & \text{falls } x = 0. \end{cases}$$

Die Funktion f' ist zunächst in allen Punkten $x \neq 0$ als Summe von Quotienten stetiger Funktionen selbst stetig, und im Punkt 0 erhalten wir

$$\lim_{x \to 0} f'(x) = \lim_{x \to 0} \left(\underbrace{\frac{\int_{0}^{\infty} \frac{1}{\sin x}}{\ln x}}_{-\infty} + \underbrace{\frac{\int_{0}^{\infty} \frac{1}{x \cdot \cos x}}_{-\infty} - \underbrace{\frac{\int_{0}^{\infty} \frac{1}{\sin x}}{(\ln x)^2}}_{-\infty}}_{-\infty} \right) = 0 + 0 - 0 = 0 = f'(0).$$

Damit ist f' in allen Punkten $x \in [0, 1]$ stetig, und damit ist f stetig differenzierbar.

c) Es ist f(0) = 0, und für alle $x \in]0, 1[$ ist x > 0 sowie $\sin x > 0$ und $\ln x < 0$, insgesamt also $f(x) = x \cdot \frac{\sin x}{\ln x} < 0$; damit gilt $W_f \subseteq]-\infty, 0]$. Für den Nachweis von " \supseteq " sei $y \in]-\infty, 0]$; mit a = 0 gilt $f(a) = 0 \ge y$, und wegen

$$\lim_{x \to 1-} f(x) = \lim_{x \to 1-} \left(\underbrace{x}_{x \to 1} \cdot \frac{-\sin 1 \in \mathbb{R}^+}{\sin x} \right) = -\infty$$

gibt es ein $b \in]0,1[$ mit $f(b) \leq y$, so daß für die differenzierbare, mithin stetige Funktion f nach dem Zwischenwertsatz ein $\xi \in [0,b]$ mit $f(\xi) = y$ existiert. Insgesamt gilt also $W_f =]-\infty,0]$.

4. a) Die auf dem abgeschlossenen Intervall $D_f = [0, 2\pi]$ definierte Funktion

$$f: [0, 2\pi] \to \mathbb{R}, \quad f(x) = \sqrt{3} \cos x + \sin x + 1,$$

ist als Summe der stetiger Funktionen selbst stetig und besitzt daher nach dem Satz von Weierstraß ein globales Minimum p und ein globales Maximum q, und für den Wertebereich von f gilt $W_f = [f(p), f(q)]$. Die Funktion f ist als Summe differenzierbarer Funktionen sogar differenzierbar mit

$$f'(x) = -\sqrt{3}\sin x + \cos x$$
 für alle $x \in [0, 2\pi]$;

so daß es für ein lokales (und damit insbesondere auch für ein globales) Extremum a von f nur die beiden folgenden Möglichkeiten gibt:

- a ist ein Randpunkt von $D_f = [0, 2\pi]$, also $a \in \{0, 2\pi\}$.
- a ist im Innern von D_f mit f'(a) = 0; wegen

$$f'(x) = 0 \iff -\sqrt{3}\sin x + \cos x = 0 \iff \\ \iff \sqrt{3}\sin x = \cos x \iff_{\cos x \neq 0} \tan x = \frac{1}{\sqrt{3}}$$

für alle $x \in]0, 2\pi[$ ist also $a \in \{\frac{\pi}{6}, \frac{7\pi}{6}\}.$

Mit Hilfe der Wertetabelle

erhalten wir $p = \frac{7\pi}{6}$ und $q = \frac{\pi}{6}$ und damit $W_f = [-1, 3]$.

b) • Die gegebene Funktion $g: \mathbb{R} \to \mathbb{R}, g(x) = x^2 e^x + 1$, ist wegen

$$\lim_{x \to +\infty} g(x) = \lim_{x \to +\infty} \left(\underbrace{x^2}_{x \to +\infty} \cdot \underbrace{e^x}_{x \to +\infty} + 1 \right) = +\infty,$$

nach oben unbeschränkt, insbesondere ohne globales Maximum. Wegen

$$g(x) = \underbrace{x^2}_{>0} \cdot \underbrace{e^x}_{>0} + 1 \ge 0 + 1 = 0^2 \cdot e^0 + 1 = g(0)$$

für alle $x \in \mathbb{R}$ besitzt g in a = 0 ein globales Minimum.

• Wir zeigen, daß die Einschränkung $g_0 = g|_{\mathbb{R}^+_0}$ von g auf \mathbb{R}^+_0 streng monoton wachsend und damit insbesondere umkehrbar ist; seien dazu $x_1, x_2 \in \mathbb{R}^+_0$ mit $x_1 < x_2$. Damit gilt wegen $0 \le x_1 < x_2$ zum einen $0 \le x_1^2 < x_2^2$ und wegen der Monotonie der Exponentialfunktion zum anderen $e^{x_1} < e^{x_2}$, mit dem Monotoniegesetz der Multiplikation also

$$x_1^2 \cdot e^{x_1} < x_2^2 \cdot e^{x_1} < x_2^2 \cdot e^{x_2}$$

und damit insgesamt

$$g_0(x_1) = x_1^2 \cdot e^{x_1} + 1 < x_2^2 \cdot e^{x_2} + 1 = g_0(x_2).$$

Folglich ist g_0 streng monoton wachsend und damit umkehrbar.

• Da die Funktion g_0 streng monoton wachsend und ihr Definitionsgebiet $D_{g_0} = \mathbb{R}_0^+$ ein Intervall ist, ist die Umkehrfunktion $g_0^{-1}: W_f \to \mathbb{R}$ stetig. Es ist g_0 nach der Produktregel differenzierbar, und für alle $x \in \mathbb{R}_0^+$ gilt

$$g'_0(x) = 2x \cdot e^x + x^2 \cdot e^x = (2+x) \cdot x \cdot e^x$$

mit

$$g_0'(x) = 0 \iff \underbrace{(2+x)}_{\leq 2>0} \cdot x \cdot \underbrace{e^x}_{>0} \iff x = 0.$$

Die Umkehrfunktion g_0^{-1} ist in allen Punkten $b = g_0(a) \in W_{g_0}$ differenzierbar mit $g_0'(a) \neq 0$, also $a \neq 0$; damit ist g_0^{-1} ist in allen Punkten $b \in W_{g_0}$ mit der Ausnahme $b = g_0(0) = 1$ differenzierbar.