INTRODUCTION TO BOHMIAN MECHANICS SUMMER TERM 2016

EXERCISE SHEET 3

Exercise 1: Typicality

For a continuous function $f : \mathbb{R} \to \mathbb{C}$ with $\int_{\mathbb{R}} |f(x)|^2 dx = ||f||_2^2 < \infty$, show that for the Lebesgue measure λ of the set of points where the function is larger than a given $\varepsilon > 0$ the following holds:

$$\lambda(\{x \in \mathbb{R} : |f(x)| > \varepsilon\}) \le \frac{C}{\varepsilon^2},$$

where C is a positive constant. Determine C.

Exercise 2: Rademacher Functions and Independence

The Rademacher functions $r_k : [0,1) \to \{0,1\}$ map $x \in [0,1)$ to the k-th digit of its binary representation.

- a) Use the Rademacher functions to write x ∈ [0,1) as a series of the form ∑_k x_k2^{-k}.
 b) With the notation P_f(a) = λ({f⁻¹(a)}) and P_{f1,...,fn}(a₁,...,a_n) = λ({f⁻¹₁(a₁) ∩ ··· ∩ f⁻¹_n(a_n)}), show that

$$\mathbb{P}_{r_{k_1},\ldots,r_{k_n}}(\delta_{k_1},\ldots,\delta_{k_n})=\prod_{l=1}^n\mathbb{P}_{r_{k_l}}(\delta_{k_l})\,,$$

where $\delta_{k_l} \in \{0, 1\}$ for $l = 1 \dots n$. c) Compute for $n \ge l \in \mathbb{N}$:

$$\lambda\left(\left\{x\in[0,1):\sum_{k=1}^{n}r_{k}(x)=l\right\}\right)$$