LMU Munich Winter term 2016/17 Prof. Dr. P. Pickl A. Schaal

Exercises on Mathematical Statistical Physics II Sheet 5

Problem 1 (Duhamel)

Let $\phi_0 \in L^2$, V be a multiplication operator (potential) with $||V||_{\infty} < \infty$ and h_0 be selfadjoint on L^2 . Consider for any $\varepsilon > 0$ the differential equation

$$i\frac{d}{dt}\phi_t^\varepsilon = -h_0\phi_t^\varepsilon + \varepsilon V \star |\phi_t^\varepsilon|^2 \phi_t^\varepsilon$$

with given initial condition $\phi_0^{\varepsilon} = \phi_0$. Show that for any time t > 0

$$\lim_{\epsilon \to 0} \|\phi_t^\varepsilon - \phi_t^0\|_2 = 0$$

Hint: Use Duhamel's formula.

Problem 2 (Scattering Length)

Let $f : \mathbb{R}^3 \to \mathbb{C}$ be an L^{∞} solution of

$$(-\Delta + V)f \equiv 0$$

for compactly supported multiplication operator $V \in L^{\infty}$. Normalize f to $||f||_{\infty} = 1$. Let $a := \int V(x)f(x)d^3x$. Show that outside the support of V

$$f = 1 - \frac{a}{|x|} \; .$$

Problem 3 (Stationary Phase)

Let Ψ_t be solution of the free Schrödinger equation in one dimension with initial Ψ_0 in Schwartz-space. Show that for any $v \in \mathbb{R}$

$$\lim_{t \to \infty} \left| \sqrt{t} \Psi_t(vt) - \widehat{\Psi}(v) \right| = 0 \,.$$

Hint: Show that the stationary point $k_{stat} = v$ and make an Taylor expansion of $\widehat{\Psi}$ around v up to first order. Show that the zeroth order of the Taylor expansion gives $t^{-1/2}\widehat{\Psi}(v)$. Integrate by parts to get good control of the first order.

The solutions to these exercises will be discussed on Friday, 25.11.2016.