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Chapter 1

Introduction

1.1 The Ising model: Peierls argument
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Chapter 2

C*-algebras, states and
representations

2.1 C*-algebras

Let A be an associative algebra over C. A is a normed algebra if there is a norm A 3 x 7→ ‖x‖ ∈
R+ such that ‖xy‖ ≤ ‖x‖‖y‖. A complete normed algebra is a Banach algebra. A mapping
x 7→ x∗ of A into itself is an involution if

(x∗)∗ = x;

(x+ y)∗ = x∗ + y∗;

(xy)∗ = y∗x∗;

(λx)∗ = λx∗.

An algebra with an involution is a *-algebra.

Definition 1. A Banach *-algebra A is called a C*-algebra if

‖x∗x‖ = ‖x‖2, x ∈ A.

Proposition 1. Let A be a C*-algebra.

1. ‖x∗‖ = ‖x‖;

2. If A does not have an identity, let Ã be the algebra obtained from A by adjoining an
identity 1. Then Ã is a C*-algebra with norm ‖ · ‖ defined by

‖λ1 + x‖ = sup
y 6=0

‖λy + xy‖
‖y‖

, λ ∈ C.

Proof. Exercise.

In the following, A will always denote a C*-algebras with an identity if not specified other-
wise.

Definition 2. The spectrum Sp(x) of x ∈ A is the set

Sp(x) := {λ ∈ C : x− λ1 is not invertible in A} .
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If |λ| > ‖x‖, then the series λ−1
∑

n∈N (x/λ)n is norm convergent and sums to (λ1 − x)−1.
Hence, Sp(x) ⊂ B‖x‖(0). Assume now that x ∈ A is a self-adjoint element and that a + ib ∈
Sp(x), a, b ∈ R. Then a+i(b+t) ∈ Sp(x+it1). Since ‖x+it1‖2 = ‖x+it1‖‖x−it1‖ = ‖x2+t21‖ ≤
‖x‖2 + t2, and by the remark above, |a+ i(b+ t)|2 ≤ ‖x‖2 + t2, and further 2bt ≤ ‖x‖ − a2 − b2
for all t ∈ R, so that b = 0. For any polynomial P over C, P (µ) − λ = A

∏n
i=1(µ − zi), and

P (x) − λ1 = A
∏n
i=1(x − zi) ∈ A for any x ∈ A. Hence, λ ∈ Sp(P (x)) iff zj ∈ Sp(x) for a

1 ≤ j ≤ n. Since P (zj) = λ, we have that λ ∈ Sp(P (x)) iff λ ∈ P (Sp(x)). We have proved

Proposition 2. Let x ∈ A.

1. Sp(x) ⊂ B‖x‖(0);

2. if x = x∗, then Sp(x) ⊂ [−‖x‖, ‖x‖];

3. if xx∗ = x∗x, i.e. x is normal, then ‖x‖ = sup{|λ| : λ ∈ Sp(x)};

4. for any polynomial P , Sp(P (x)) = P (Sp(x));

The proof of 3. is left as an exercise. Note that the condition holds in particular for x = x∗

An element x ∈ A is positive if it is self-adjoint and Sp(x) ⊂ R+.

Proposition 3. Let x ∈ A, x 6= 0. The following are equivalent:

1. x is positive;

2. there is a self-adjoint z ∈ A such that x = z2;

3. there is y ∈ A such that x = y∗y;

Proof. (3)⇒ (2) by choosing y = z. (3)⇒ (1) since z2 is self-adjoint and since, by Proposition 2,
Sp(z2) ⊂ [0, ‖z‖2]. To show (1)⇒ (3), we note that1 for any µ > 0,

µ =

[
1

π

∫ ∞
0

√
λ

(
1

λ
− 1

λ+ µ

)
dλ

]2

(2.1)

Since x is positive, (x+λ1) is invertible for all λ > 0 so that z := π
∫∞

0

√
λ
(
λ−1 − (x+ λ1)−1

)
dλ

is well defined as a norm convergent integral, and x = z2. Using again (2.1) with µ = 1, we
have that

‖x‖1/21− z =
‖x‖1/2

π

∫ ∞
0

√
λ

λ+ 1
(x̂+ λ1)−1(x̂− 1)dλ, x̂ = x‖x‖−1

But x̂ positive implies Sp(x̂) ⊂ [0, 1], hence Sp(1− x̂) ⊂ [0, 1] and ‖1− x̂‖ ≤ 1. Moreover, since
Sp((x̂ + λ1)−1) = (Sp(x̂ + λ1))−1 ⊂ [(1 + λ)−1, λ−1], we have ‖(x̂ + λ1)−1‖ ≤ λ−1 for λ > 0.
Hence, ‖1− z‖x‖−1/2‖ ≤ 1 so that Sp(z) ⊂ [0, 2‖x‖1/2] and finally z is positive.

It remains to prove (2)⇒ (1). Since x = y∗y is self-adjoint, x2 is positive and we denote by
|x| its positive square root defined by the integral above. Then x± := (|x|±x)/2 is positive and
x−x+ = x+x− = 0. Decomposing yx− = s + it, with self-adjoint s, t, we have (yx−)∗(yx−) +
(yx−)(yx−)∗ = 2(s2+t2) ≥ 0. But −(yx−)∗(yx−) = −x−(−x−+x+)x− = x3

− is positive, so that
(yx−)(yx−)∗ is positive. On the other hand, Sp((yx−)(yx−)∗)∪{0} = Sp((yx−)∗(yx−))∪{0} ⊂
R−, hence (yx−)∗(yx−) = 0 so that x− = 0, and finally x = x+ is positive.

1Convergence follows from the asymptotics O(s−1/2) as s → 0 and O(s−3/2) as s → ∞, while the change of
variables λ = µξ yields immediately that the integral is

√
µ, up to a constant.
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Definition 3. A *-morphism between two *-algebras A and B is a linear map π : A → B
such that π(A1A2) = π(A1)π(A2) and π(A∗) = π(A)∗, for all A,A1, A2 ∈ A. It is called a
*-isomorphism if it is bijective. A *-isomorphism A → A is an automorphism.

Proposition 4. Let A,B be two C*-algebras and π : A → B a *-morphism. Then ‖π(x)‖B ≤
‖x‖A, and the range {π(A) : A ∈ A} is a *-subalgebra of B.

Proof. If x is self-adjoint, so is π(x) and ‖π(x)‖ = sup{|λ| : λ ∈ Sp(π(x))}. If x−λ1 is invertible,
then 1 = π((x−λ1)−1(x−λ1)) = π((x−λ1)−1)π(x−λ1) so that π(x)−λ1 is invertible, whence
Sp(π(x)) ⊂ Sp(x), we have that ‖π(x)‖ ≤ sup{|λ| : λ ∈ Sp(x)} = ‖x‖. The general case follows
from ‖π(x)‖2 = ‖π(x∗x)‖ ≤ ‖x∗x‖ = ‖x‖2.

Let Γ be a locally compact Hausdorff space, and let C0(Γ) be the algebra, under pointwise
multiplication, of all complex valued continuous functions that vanish at infinity.

Theorem 5. If A is a commutative C*-algebra, then there is a locally compact Hausdorff space
Γ such that A is *-isomorphic to C0(Γ).

Proof. See Robert’s lectures.

In classical mechanics, the space Γ is usually referred to as the phase space.
If A is a commutative C*-algebra with an identity, then A is isomorphic to C(K), the

algebra of continuous functions on a compact Hausdorff space K.
Let U be a *-subalgebra of L(H). The commutant U ′ is the subset of L(H) of operators

that commute with every element of U , and so forth with U ′′ := (U ′)′. In particular, U ⊂ U ′′,
and further U ′ = U ′′′.

Definition 4. A von Neumann algebra or W*-algebra on H is a *-subalgebra U of L(H) such
that U ′′ = U . Its center is Z(U) := U ∩ U ′, and U is a factor if Z(U) = C · 1.

Theorem 6. Let U be a *-subalgebra of L(H) such that UH = H. Then U is a von Neumann
algebra iff U is weakly closed.

Note that UH = H is automatically satisfied if 1 ∈ U . Furthermore, for any *-subalgebra U
of L(H), let U be its weak closure for which U ′′ = U by the theorem. Since U ⊂ U , we have

U ′ ⊂ U ′. Furthermore, if x ∈ U ′, and y ∈ U , with U 3 yn ⇀ y, then x commutes with yn for all
n and hence with y, so that U ′ ⊂ U ′. It follows that U ′ = U ′, whence U ′′ = U ′′ and so:

Corollary 7. U is weakly dense in U ′′, namely U = U ′′.

2.2 Representations and states

Definition 5. Let A be a C*-algebra and H a Hilbert space. A representation of A in H is a
*-morphism π : A → L(H). Moreover,

1. Two representations π, π′in H,H′ are equivalent if there is a unitary map U : H → H′
such that Uπ(x) = π′(x)U ;

2. A representation π is topologically irreducible if the only closed subspaces that are invari-
ant under π(A) are {0} and H;

3. A representation π is faithful if it is an isomorphism, namely Kerπ = {0}.
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Note that in general ‖π(x)‖ ≤ ‖x‖, with equality if and only if π is faithful. One can further
show that for any C*-algebra, there exists a faithful representation.

If (H, π) is a representation of A and n ∈ N, then nπ(A)(⊕ni=1ψi) := ⊕ni=1π(A)ψi defines a
representation nπ on ⊕ni=1H.

Proposition 8. Let π be a representation of A in H. T.f.a.e

1. π is topologically irreducible;

2. π(A)′ := {B ∈ L(H) : [B, π(x)] = 0, for all x ∈ A} = C · 1;

3. Any ξ ∈ H, ξ 6= 0 is cyclic: π(x)ξ = H, or π = 0.

Proof. (1) ⇒ (3) : If π(A)ξ is not dense, then π(A)ξ = {0}. It follows that Cξ is an invariant
subspace, and hence H = Cξ and π = 0
(3)⇒ (1) : Let K 6= {0} be a closed invariant subspace. For any ξ ∈ K, π(A)ξ ⊂ K and since ξ
is cyclic, π(A)ξ is dense in H
(2)⇒ (1) : Let K 6= {0} be a closed invariant subspace, and let PK be the orthogonal projection
on K. Then PK ∈ π(A)′, since for ξ ∈ K, η ∈ K⊥, 〈ξ, π(x)η〉 = 〈π(x∗)ξ, η〉 = 0 so that
π(x)η ∈ K⊥ for any x ∈ A. Hence PK = 0 or PK = 1, i.e. K = {0} or K = H.
(1) ⇒ (2) : Let c ∈ π(A)′ be self-adjoint. Then all spectral projectors of c belong to π(A)′, so
that they are all either 0 or 1 by (1), and c is a scalar. If c is not self-adjoint, apply the above
to c± c∗.

A triple (H, π, ξ) where ξ is a cyclic vector is called a cyclic representation.
Recall that A∗ := {ω : A → C : ω is linear and bounded}. For any ξ ∈ H, the map

A 3 x 7→ 〈ξ, π(x)ξ〉 is an element of A∗ since |〈ξ, π(x)ξ〉| ≤ ‖ξ‖2H‖x‖A and it is positive:
If x is positive, then x = y∗y and 〈ξ, π(x)ξ〉 = ‖π(y)ξ‖2H ≥ 0. We shall denote it ωπ,ξ. If
0 ≤ T ≤ 1 is a self-adjoint operator in H and T ∈ π(A)′, then the form x 7→ ωπ,Tξ is positive,
and ωπ,Tξ(y

∗y) = ‖π(y)Tξ‖2 = ‖Tπ(y)ξ‖2 ≤ ‖π(y)ξ‖2 = ωπ,ξ(y
∗y), so that ωπ,Tξ ≤ ωπ,ξ.

Lemma 9. Let ω be a positive linear functional on A. Then

ω(x∗y) = ω(y∗x), |ω(x∗y)|2 ≤ ω(x∗x)ω(y∗y).

Proof. This follows from the positivity of the quadratic form λ 7→ ω((λx+y)∗(λx+y)) ≥ 0.

In fact, any positive linear form ν bounded above by ωπ,ξ is of the form above. Indeed,

|ν(x∗y)|2 ≤ ν(x∗x)ν(y∗y) ≤ ωπ,ξ(x∗x)ωπ,ξ(y
∗y) ≤ ‖π(x)ξ‖2‖π(y)ξ‖2

so that π(x)ξ × π(y)ξ 7→ ν(x∗y) is a densely defined, bounded, symmetric linear form on
H×H. By Riesz representation theorem, there exists a unique bounded operator T such that
ν(x∗y) = 〈π(x)ξ, Tπ(y)ξ〉, and 0 ≤ T ≤ 1. Moreover,

〈π(x)ξ, Tπ(z)π(y)ξ〉 = ν(x∗zy) = ν((z∗x)∗y) = 〈π(x)ξ, π(z)Tπ(y)ξ〉,

so that T ∈ (π(A))′.

Definition 6. A state ω on a C*-algebra A is a positive element of A∗ such that

‖ω‖ = sup
x∈A

ω(x)

‖x‖
= 1.

A state ω is called

6



• pure if the only positive linear functionals majorised by ω are λω, 0 ≤ λ ≤ 1,

• faithful if ω(x∗x) = 0 implies x = 0.

If ω is normalised and A has an identity, then ω(1) = 1. Reciprocally, |ω(x)|2 ≤ ω(1)ω(x∗x).
Since ‖x∗x‖1− x∗x ≥ 0, we further have |ω(x)|2 ≤ ‖x∗x‖ω(1)2, i.e. ‖ω‖ ≤ ω(1), which proves:

Proposition 10. If A has an identity, and ω is a positive linear form on A, then ‖ω‖ = 1 if
and only if ω(1) = 1.

By Corollary 7, π(A)′′ is a von Neumann algebra for any state ω. ω is called a factor state
if π(A)′′ is a factor, i.e. if π(A)′ ∩ π(A)′′ = C · 1.

We shall denote E(A) the set of states over A and P(A) the set of pure states.

Proposition 11. E(A) is a convex set, and it is weakly-* compact iff A has an identity. In
that case, ω ∈ P(A) iff it is an extremal point of E(A).

Proof. We only prove the second part, the first part being is a version of the Banach-Alaoglu
theorem. Let ω ∈ P(A). Assume that ω = λω1 + (1− λ)ω2. Then ω ≥ λω1, hence λω1 = µ1ω,
0 ≤ µ2 ≤ 1 and similarly for ω2. Hence ω = (µ1 +µ2)ω and ω is extremal. Reciprocally, assume
that ω is not pure, in which case there is a linear functional ν̃1 6= λ̃ω such that ω ≥ ν̃1. In
particular, λ := ν̃1(1) ≤ ω(1) = 1. Since ν1 := λ−1ν̃1 is a state, ν2 := (ω − λν1)/(1− λ) defines
a state, and ω = λν1 + (1− λ)ν2. Hence ω is not extremal.

In particular, if {ωi}i∈I is an arbitrary infinite family of states, then there exists at least one
weak-* accumulation point. Note that ωn ⇀ ω in the weak-* topology if ωn(x) → ω(x) for all
x ∈ A. In fact, it is defined as the weakest topology in which this holds, namely in which the
map x : ω 7→ ω(x) are continuous.

Theorem 12. Let A be a C*-algebra and ω ∈ E(A). Then there exists a cyclic representation
(H, π,Ω) such that

ω(x) = 〈Ω, π(x)Ω〉

for all x ∈ A. Such a representation is unique up to unitary isomorphism.

Proof. We consider only the case where A has an identity. Let N := {a ∈ A : ω(a∗a) = 0}.
Since, by Lemma 9, 0 ≤ ω(a∗x∗xa) ≤ ω(a∗a)‖x‖2 = 0, we have a ∈ N , x ∈ A implies xa ∈ N is
a left ideal. On h := A\N , we denote ψx the equivalence class of x ∈ A, and the bilinear form
(ψx, ψy) 7→ ω(x∗y) is positive and well-defined, since ω((x + a)∗, y + b) = ω(x∗y) + ω(a∗y) +
ω(x∗b) + ω(a∗b) = ω(x∗y) for any x, y ∈ A; a, b ∈ N . Let H be the Hilbert space completion
of h. For any ψx ∈ h, let π(y)ψx := ψyx. The map π : A → L(h) is linear and bounded
since ‖π(y)ψx‖2 = 〈ψyx, ψyx〉 = ω(x∗y∗yx) ≤ ‖y‖2‖x‖2 and thus has a bounded closure. It is a
*-homomorphism since

〈ψy, π(z∗)ψx〉 = 〈ψy, ψz∗x〉 = ω(y∗z∗x) = 〈ψzy, ψx〉 = 〈π(z)ψy, ψx〉

and π(xy)ψz = ψxyz = π(x)π(y)ψz and defines a representation ofA inH. Moreover, 〈ψ1, π(x)ψ1〉 =
〈ψ1, ψx〉 = ω(x), so that Ω = ψ1. Cyclicity follows from {π(x)Ω : x ∈ A} = {ψx : x ∈ A}, which
is the dense set of equivalence classes by construction. Finally, let (H′, π′,Ω′) be another such
representation. Then the map U : H → H′ defined by π′(x)Ω′ = Uπ(x)Ω is a densely defined
isometry, since

〈π(y)Ω, π(x)Ω〉H = ω(y∗x) = 〈π′(y)Ω′, π′(x)Ω′〉H′ = 〈Uπ(y)Ω, Uπ(x)Ω〉H′ ,

and hence extends to a unitary operator.
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Corollary 13. Let A be a C*-algebra and α a *-automorphism. If ω ∈ E(A) is α-invariant,
ω(α(x)) = ω(x) for all x ∈ A, then there is a unique unitary operator U on the GNS Hilbert
space H such that, for all x ∈ A,

Uπ(x) = π(α(x))U, and UΩ = Ω.

One says that α is unitarily implementable in the GNS representation.

Proof. The corollary follows from the uniqueness part of Theorem 12 applied to (H, π ◦ α,Ω),
since 〈Ω, π(x)Ω〉 = ω(x) = ω(α(x)) = 〈Ω, π ◦ α(x)Ω〉.

Proposition 14. Let A be a C*-algebra, ω ∈ E(A) and (H, π,Ω) the associated representation.
Then π is irreducible and π 6= 0 iff ω is a pure state.

Proof. Let ν be majorised by ω = ωπ,Ω. There is a 0 ≤ T ≤ 1 such that ν(x∗y) = 〈π(x)ξ, Tπ(y)ξ〉
with T ∈ (π(A))′. If π is irreducible, then T =

√
λ · 1 so that ν = λω, 0 ≤ λ ≤ 1 and ω is pure.

Reciprocally, if ν is not a multiple of ω, then T is not a multiple of the identity, so that (H, π)
is not irreducible.

Definition 7. Let (H, π) be a representation of A. A state ω is π-normal if there exists a
density matrix ρω in H such that ω(A) = Tr(ρωπ(A)). Two representations (H1, π1), (H2, π2)
are quasi-equivalent if every π1-normal state is π2-normal and conversely.

Further, two states ω1, ω2 are said to be quasi-equivalent if their GNS representations are quasi-
equivalent. These correspond to thermodynamically equivalent states.

2.3 Examples: Quantum spin systems, the CCR and CAR al-
gebras

2.3.1 Quantum spin systems

Let Γ be a countable set. Denote Λ b Γ the finite sets of Γ and F(Γ) the set of finite subsets. For
each x ∈ H, let Hx be a finite dimensional Hilbert space, and assume that supx∈Γ dim(Hx) <∞.
The Hilbert space of Λ b Γ is given by HΛ := ⊗x∈ΛHx. The associated algebra of local
observables is

AΛ := L(HΛ) ' ⊗x∈ΓL(Hx).

Inclusion defines a partial order on F(Γ), which induces the following imbedding:

Λ ⊂ Λ′ =⇒ AΛ ⊂ AΛ′

where x ∈ AΛ is identified with x⊗ 1Λ′\Λ ∈ AΛ′ . Note that Λ∩Λ′ = ∅ implies xy = x⊗ y = yx
for all x ∈ AΛ, y ∈ AΛ′ . Finally, the algebra of quasi-local observables is given by

A :=
⋃

Λ∈F(Γ)

AΛ

‖·‖
≡ Aloc

‖·‖

and it is a C*-algebra. Note that A has an identity. In other words, A is obtained as a limit
of finite-dimensional matrix algebras, which is referred to as a uniformly hyperfine algebra
(UHF). From the physical point of view, a finite dimensional Hilbert space is the state space
of a physical system with a finite number of degrees of freedom, namely a few-levels atom or
a spin. In the latter case, Hx = C2Sx+1 is the state space of a spin-S, with S ∈ 1/2N, and it
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carries the (2Sx + 1)-dimensional irreducible representation of the quantum mechanics rotation
group SU(2). A UHF is therefore the algebra of observables of atoms in an optical lattice or of
magnetic moments of nuclei in a crystal.

A state ω on A has the property that it is generated by a a family of density matrices defined
by: if x ∈ AΛ, then ω(x) = TrHΛ

(ρωΛx). Such a state is called locally normal. We have:

Proposition 15. If ω is a state of a quantum spin system A, then the density matrices ρωΛ obey

1. ρωΛ ∈ AΛ, ρωΛ ≥ 0 and TrHΛ
(ρωΛ) = 1

2. the consistency condition Λ ⊂ Λ′ and x ∈ AΛ, then TrHΛ
(ρωΛx) = TrHΛ′ (ρ

ω
Λ′x)

Conversely, given a family {ρΛ}Λ∈F(Γ) satisfying (1, 2), there is a unique state ωρ on A.

Proof. Since AΛ is a finite dimensional matrix algebra, the restriction of ω to AΛ is given by a
density matrix satisfying (1). (2) follows from the identification AΛ ' AΛ ⊗ 1Λ′\Λ. Conversely,
a family of ρΛ defines is a bounded linear functional on the dense subalgebra Aloc. Hence it
extends uniquely to a linear functional on A with the same bound.

Theorem 16. Let ω1, ω2 be two pure states of a quantum spin system. Then ω1 and ω2 are
equivalent if and only if for all ε > 0, there is Λ b Γ such that

|ω1(x)− ω2(x)| ≤ ε‖x‖,

for all x ∈ AΛ′ with Λ ∩ Λ′ = ∅.

In other words, two pure states of a quantum spin system are equivalent if and only if they are
‘equal at infinity’, namely thermodynamically equal. More generally, the theorem holds – with
quasi-equivalence – for any two factor states. Note that if a state is pure, then it is irreducible,
i.e. π(A)′ = C · 1, so that π(A)′′ = L(H) and π(A)′ ∩ π(A)′′ = C · 1, hence ω is a factor state.

In practice, one is given a family of vectors Ψi
Λ, i = IΛ an index set, typically the set of

thermal/ground states of a finite volume Hamiltonian HΛ on HΛ. All states ωiΛ := 〈Ψi
Λ, ·Ψi

Λ〉
on AΛ can be extended to a state on A (by Hahn-Banach), that we still denote ωiΛ. The set
S := {ωiΛ : Λ b Γ, i ∈ IΛ} is a subset of E(A), which is weakly-* compact, hence there are weak-
* accumulation points, denoted ωiΓ, i ∈ IΓ. These are usually taken as the thermodynamic
thermal/ground states of the quantum spin system.

Finally, let Γ = Zd. There is a natural notion of translations on A which defines a group of
automorphisms Zd 3 z 7→ τz: If Λ b Γ and x ∈ AΛ, τz(x) is the same observable on Λ + z. This
defines an automorphism on the dense subalgebra Aloc, which can be extended by continuity
to τz on all of A. If a state is translation invariant, ω ◦ τz = ω for all z ∈ Z, then τz is unitarily
implementable in the GNS representation, namely there is Zd 3 z 7→ U(z), where U(z) are
unitary operators on H with U(z)Ω = Ω, such that π(τz(x)) = U(z)∗π(x)U(z) for all z ∈ Zd
and x ∈ A. Furthermore, τz1+z2 = τz1 ◦ τz1 implies U(z1 + z2) = U(z1)U(z2).

The following proposition is usually referred to as the asymptotic abelianness of A

Proposition 17. Let A and z 7→ τz be as above. Then for each x, y ∈ A,

lim
|z|→∞

[τz(x), y] = 0.

Proof. Exercise.
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2.3.2 Fermions: the CAR algebra

The algebra of canonical anticommutation relations (CAR) is the algebra of creation and anni-
hilation operators of fermions

Definition 8. Let D be a prehilbert space. The CAR algebra A+(D) is the C*-algebra generated
by 1 and elements a(f), f ∈ D satisfying

f 7−→ a(f) is antilinear

{a(f), a(g)} = 0, {a(f)∗, a(g)∗} = 0

{a(f)∗, a(g)} = 〈g, f〉1

for all f, g ∈ D.

It follows from the CAR relations that (a(f)∗a(f))2 = a(f)∗{a(f), a(f)∗}a(f) = ‖f‖2a(f)∗a(f),
and the C*-property then implies ‖a(f)‖ = ‖f‖ so that f 7→ a(f) is a continuous map.

Proposition 18. Let D be a prehilbert space with closure D = H. Then

1. A+(D) = A+(H)

2. A+(D) is unique: If A1,A2 both satisfy the above definition, then there exists a unique
*-isomorphism γ : A1 → A2 such that a2(f) = γ(a1(f)) for all f ∈ D

3. If L is a bounded linear operator in H and A a bounded antilinear operator in H satisfying2

L∗L+A∗A = LL∗ +AA∗ = 1,

LA∗ +AL∗ = L∗A+A∗L = 0,

there is a unique *-automorphism γL,A of A+(H) such that γL,A(a(f)) = a(Lf) +a(Af)∗.

Proof. Since D is a subset of H, we have that A+(D) ⊂ A+(H). Moreover, if f ∈ H, there is a
sequence fn ∈ D such that fn → f . By linearity and continuity, ‖a(f)−a(fn)‖ = ‖a(f−fn)‖ =
‖f − fn‖ → 0, showing that a(f) ∈ A+(D), and A+(H) ⊂ A(D), proving (1).

Assume now that dimH < ∞, and that {fi}ni=1 is an orthonormal basis. Then the map
I : A+(H)→M⊗n2 defined by

I(a(fk)a(fk)
∗) = ek11 I(Vk−1a(fk)) = ek12

I(Vk−1a(fk)
∗) = ek21 I(a(fk)

∗a(fk)) = ek22

where ekij is the canonical basis matrix in M⊗n2 which is non-trivial on the k-th factor, and

Vk =
∏k
i=1(1 − 2a(fi)

∗a(fi)), is an algebra isomorphism. In particular, the CAR imply that
ekije

k
ab = δjae

k
ib and [ekij , e

l
ab] = 0 if k 6= l as it should. Furthermore, it is invertible with inverse

a(fk) = I−1

(
k−1∏
i=1

(ei11 − ei22)ek12

)
.

This proves (2) for the finite dimensional case. If H is infinite dimensional, there is a basis
{fα}α∈A of H, not necessarily countable, and the above construction can be made with any
finite subset of A. We conclude in this case by (1) since the vector space of finite linear
combinations of fα is dense in H.

2By definition, 〈f,Ag〉 = 〈g,A∗f〉 for an antilinear operator
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Finally,

{a(Lf) + a(Af)∗, a(Lg)∗ + a(Ag)} = 〈Lf, Lg〉+ 〈Ag,Af〉 = 〈f, g〉,

and similar computations for other anticommutators show that 1 and a(Lf) + a(Af)∗ for all
f ∈ H also generate A+(H), conluding the proof by (2).

Note that the proof of (2) shows that the CAR algebra is a UHF algebra.
The transformation γL,A is called a Bogoliubov transformation. Its unitary implementability

in a given representation is a separate question, which can be completely answered in the case of
so-called quasi-free representations. A particularly simple case is given by A = 0 and a unitary
L, corresponding to the non-interacting evolution of single particles under L.

2.3.3 Bosons: the CCR algebra

The algebra of canonical commutation relations (CCR) is the algebra of creation and annihila-
tion operators of bosons. Being unbounded operators, they do not form a C*-algebra, but their
exponentials do so and it is usually referred to, in this form, as the Weyl algebra.

Definition 9. Let D be a prehilbert space. The Weyl algebra A−(D) is the C*-algebra generated
by W (f), f ∈ D satisfying

W (−f) = W (f)∗

W (f)W (g) = exp

(
− i

2
Im〈f, g〉

)
W (f + g)

for all f, g ∈ D.

Note the commutation relation W (f)W (g) = exp(−iIm〈f, g〉)W (g)W (f).

Proposition 19. Let D be a prehilbert space with closure D = H. Then

1. A−(D) = A−(H) if and only if D = H

2. A−(D) is unique: If A1,A2 both satisfy the above definition, then there exists a unique
*-isomorphism γ : A1 → A2 such that W2(f) = γ(W1(f)) for all f ∈ D

3. W (0) = 1, W (f) is a unitary element and ‖W (f)− 1‖ = 2 for all f ∈ D, f 6= 0

4. If S is a real linear, invertible operator in D such that Im〈Sf, Sg〉 = Im〈f, g〉, then there
is a unique *-automorphism γS of A−(D) such that γS(W (f)) = W (Sf).

In fact, D only needs to be a real linear vector space equipped with a symplectic form, and S
is a symplectic map. This is the natural structure of phase space and its Hamiltonian dynamics
in classical mechanics, and the map f 7→ W (f) is called the Weyl quantisation3. (3) shows in
particular that it is a discontinuous map. We only prove (3) and (4). The difference between
the CAR and CCR algebra with respect to closure of the underlying space is due to the lack of
continuity of f 7→W (f).

Proof. The definition implies that W (f)W (0) = W (f) = W (0)W (f) so that W (0) = 1. More-
over, W (f)W (−f) = W (−f)W (f) = W (0) = 1 so that W (f) is unitary. In turn, this implies

W (g)W (f)W (g)∗ = exp(iIm〈f, g〉)W (f).

3In fact, it is also an algebra isomorphism between D = C∞(X) equipped with a Poisson bracket and A−(D)
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Hence, the spectrum of W (f) is invariant under arbitrary rotations for any f 6= 0, so that
Sp(W (f)) = S1. Hence, sup{|λ| : λ ∈ Sp(W (f) − 1)} = 2, which concludes the proof of (3)
since W (f) − 1 is a normal operator. Finally, (4) follows again from (2) and the invariance of
the Weyl relations.

Definition 10. A representation (H, π) of A−(D) is regular if t 7→ π(W (tf)) is a strongly
continuous map on H for all f ∈ D.

In a regular representation, R 3 t 7→ π(W (tf)) is a strongly continuous group of uni-
taries by the Weyl relations, so that Stone’s theorem yields the existence of a densely defined,
self-adjoint generator Φπ(f) such that π(W (tf)) = exp(itΦπ(f)) for all f ∈ D. In fact, for
any finite dimensional subspace K ⊂ D there is a common dense space of analytic vectors of
{Φπ(f),Φπ(if), f ∈ K}, namely for which

∑∞
n=0 ‖Φn

πψ‖tn/n! < ∞ for t small enough. The
creation and annihilation operators can be defined

a∗π(f) := 2−1/2 (Φπ(f)− iΦπ(if)) , aπ(f) := 2−1/2 (Φπ(f) + iΦπ(if))

on D(a∗π(f)) = D(aπ(f)) = D(Φπ(f)) ∩D(Φπ(if)), which is dense. Note that a∗π(f) ⊂ aπ(f)∗.
In fact, equality holds.

By construction f 7→ Φπ(f) is real linear, so that f 7→ aπ(f) is antilinear and f 7→ a∗π(f)
is linear. Now, taking the second derivative of the Weyl relations applied on any vector ξ ∈
D(Φπ(f)) ∩D(Φπ(g)) at t = t′ = 0, one obtains (Φπ(f)Φπ(g)− Φπ(g)Φπ(f)) ξ = iIm〈f, g〉ξ, so
that

(aπ(f)a∗π(g)− a∗π(g)aπ(f)) ξ = 〈f, g〉ξ
the usual form of the canonical commutation relations (CCR). Finally, we prove that the
creation/annihilation operators are closed. Indeed, ‖Φπ(f)ξ‖2 + ‖Φπ(if)ξ‖2 = ‖aπ(f)ξ‖2 +
‖a∗π(f)ξ‖2, while the commutation relations yield ‖a∗(f)ξ‖2 − ‖a(f)ξ‖2 = ‖f‖2‖ξ‖2. Together,
‖Φπ(f)ξ‖2 + ‖Φπ(if)ξ‖2 = 2‖aπ(f)ξ‖2 + ‖f‖2‖ξ‖2. Hence, for any sequence ψn ∈ D(aπ(f))
such that ψn → ψ and aπ(f)ψn converges, we have that Φπ(f)ψn,Φπ(if)ψn converge. Since
Φπ are self-adjoint and hence closed, we have that ψ ∈ D(aπ(f)), and Φπ(f)ψn → Φπ(f)ψ and
Φπ(if)ψn → Φπ(if)ψ. By the norm equality again, aπ(f)ψn → aπ(f)ψ and aπ(f) is closed.

2.3.4 Fock spaces and the Fock representation

The set D⊗n carries an action Π of the permutation group Sn

Ππ : ψ1 ⊗ · · · ⊗ ψn 7−→ ψπ−1(1) ⊗ · · · ⊗ ψπ−1(n)

for any π ∈ Sn and we denote D(n)
± := {Ψ(n) ∈ D⊗n : ΠπΨ(n) = (±1)sgnπΨ(n)}, namely the

symmetric, respectively antisymmetric subspace of D⊗n. Let also D(0)
± := C. The bosonic,

respectively fermionic Fock space over D is denoted F±(D) := ⊕∞n=0D
(n)
± . That is, a vector Ψ ∈

F±(D) can be represented as a sequence (Ψ(n))n∈N such that Ψ(n) ∈ D(n)
± , with

∑
n∈N ‖Ψ(n)‖ <

∞. The vector Ω := (1, 0, . . .) is called the vacuum. We further denote Ffin
± (D) := {Ψ ∈ F±(D) :

∃N ∈ N with Ψ(n) = 0,∀n ≥ N}, which is dense. Note that the probability to find more than
N particles in any vector Ψ vanishes as N →∞,

P≥N (Ψ) :=
∑
n≥N
‖Ψ(n)‖2 −→ 0, (N →∞),

which we interpret as follows: In Fock space, there is an arbitrarily large but finite number
of particles. In particular, there is no vector representing a gas at non-zero density in the

thermodynamic limit. We define N : Ffin
± (D)→ Ffin

± (D) by NΨ = nΨ whenever Ψ ∈ D(n)
± .

12



For f ∈ D, let b±(f) : D⊗n → D⊗n−1 be defined by

b±(f)(ψ1, . . . ψn) =
√
n〈f, ψ1〉(ψ2, . . . ψn),

which maps D(n)
± to D(n−1)

± , with b±(f)D(0)
± = 0, and hence b±(f) : F±(D) → F±(D). Its

adjoint b∗±(f) := b±(f)∗ : D(n−1)
± → D(n)

± such that

b∗±(f)Ψ(n−1) =
1√
n

n∑
k=1

(±1)k−1Ππkf ⊗Ψ(n−1)

where π−1
k = (k, 1, 2, . . . , k − 1, k + 1, . . . , n). Indeed, the right hand side Ψ̃ is in D(n)

± : (πσ(k) ◦
σ−1 ◦ π−1

k )(1) = 1 and the signature of the permutation is (k − 1) + sgn(σ) + (σ(k) − 1),

so that Ππ−1
σ(k)

ΠσΠπk(f ⊗ Ψ(n−1)) = (±1)sgn(σ)+(σ(k)−k)f ⊗ Ψ(n−1), which implies that ΠσΨ̃ =

(±1)sgn(σ)Ψ̃. Moreover, for any Υ(n) ∈ D(n)
± ,

〈b±(f)Υ(n),Ψ(n−1)〉 =
√
n〈Υ(n), f ⊗Ψ(n−1)〉 =

1√
n

n∑
k=1

〈ΠπkΥ(n),Ππk(f ⊗Ψ(n−1))〉 = 〈Υ(n), Ψ̃〉

where we used that Π(·) is unitary, proving that Ψ̃ = b∗±(f)Ψ(n−1).

Proposition 20. 1. f 7→ b±(f) is antilinear, f 7→ b∗±(f) is linear

2. Nb±(f) = b±(f)(N − 1)

3. b±(f), b∗±(g) satisfy the canonical commutation, resp. anticommutation relations

Proof. We denote [A,B]± := AB∓BA and prove [b±(f), b∗±(g)]± = 〈f, g〉. Indeed, for Ψ(n−1) =
ψ1 ⊗ · · · ⊗ ψn−1,

1√
n
b±(f)Ππk+1

(g⊗Ψ(n−1)) = 〈f, ψ1〉ψ2⊗· · ·⊗ψk⊗g⊗· · ·ψn−1 =
1√
n− 1

Ππk(g⊗b±(f)Ψ(n−1)),

so that

b±(f)b±(g)Ψ(n−1) =
1√
n

n∑
k=1

(±1)k−1b±(f)Ππk(g ⊗Ψ(n−1))

= 〈f, g〉Ψ(n−1) ± 1√
n− 1

n−1∑
k=1

(±1)k−1Ππk(g ⊗ b±(f)Ψ(n−1))

= 〈f, g〉Ψ(n−1) ± b±(g)b±(f)Ψ(n−1),

where the second equality follows by extracting the first term in the sum and using the obser-
vation above in the remaining terms.

In particular, {b−(f) : f ∈ D} form a representation of the CAR algebra. Furthermore, The
operators Φ+(f) := 2−1/2(b+(f) + b∗+(f)) are symmetric on Ffin

+ (D) and extend to self-adjoint
operators, so that W+(f) := exp(iΦ+(f)) are well-defined unitary operators on F+(D), yielding
a representation of the Weyl algebra. They are the fermionic and bosonic Fock representations
associated to the Fock state{

ωCAR
F (a(f)∗a(g)) :=

〈
Ω, b∗−(f)b−(g)Ω

〉
= 0 and ωCAR

F (a(f)) := 0 (fermions)

ωCCR
F (W (f)) := 〈Ω,W+(f)Ω〉 = e−‖f‖

2/4 (bosons)
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In other words, Fock spaces are the GNS Hilbert spaces for the Fock states.
Quantum mechanics in one dimension for one particle is usually associated with the Schrödinger

representation, defined on the Hilbert space L2(R). It arises as the regular representation of
the Weyl algebra A−(C) given by

πS(W (s+ it)) := e
i
2
stU(s)V (t),

where
(U(s)ψ)(x) = eistψ(x), (V (t)ψ)(x) = ψ(x+ t),

with self-adjoint generators X := ΦS(1) and P := ΦS(i) = −i∂x.
In fact, L2(R) carries a Fock space structure, obtained by introducing aS := 2−1/2(X + iP )

and a∗S := 2−1/2(X − iP ), which satisfy the CCR (strongly on a dense set such as C∞c (R). The
vacuum vector ΩS is the L2-normalised solution of aSΩS = 0, namely

(x+ ∂x)ΩS(x) = 0, i.e. ΩS(x) = π−1/4e−x
2/2.

With Hn := span{(a∗S)nΩS}, namely the span of the nth Hermite function, one obtains L2(R) =
⊕∞n=0Hn. In other words, L2(R) ' F+(C) and the Schrödinger and Fock representations are
equivalent, the unitary map being (a∗S)nΩS 7→ (b∗+)nΩ.

Hence, the dimension of D has the interpretation of ‘the number of degrees of freedom’ of
the system and N -body quantum mechanics in Rd corresponds to the algebra A−(CNd), which
has a Schrödinger representation, namely the (Nd)-fold tensor product representation of that
given above. In fact, this is the only one:

Theorem 21. Let H be a finite dimensional Hilbert space, dimH = n. Then, any irreducible
representation of A−(H) is equivalent to the Schrödinger representation.

In other words, the algebraic machinery is useless in quantum mechanics. Whenever dimH =∞,
typically H = L2(Rd) itself, there are truly inequivalent representations: these are in particular
those arising in quantum statistical mechanics.
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Chapter 3

Equilibrium: KMS states

In a quantum system with Hamiltonian H such that Tr exp(−βH) is finite for some β > 0, the
Gibbsian rule is as follows: The system in thermal equilibrium is in a state given by a density
matrix ρβ on H,

ρβ = Z(β)−1e−βH , Z(β) := Tre−βH .

Among its many properties, we concentrate on an a priori rather coincidental properties. Let ωβ
denote the state associated to the density matrix ρβ, and τt(A) = exp(itH)A exp(−itH). Con-
sider the function Fβ(A,B; t) = Z(β)−1Tr(exp(−i(t−iβ)H)A exp(itH)B). Using the cyclicity of
the trace, Fβ(A,B; t) = ωβ(Aτt(B)). On the other hand, Fβ(A,B; t) can be analytically contin-
ued into the complex plane to t+ iβ to give Fβ(A,B; t+ iβ) = Z(β)−1Tr(exp(−itH)A exp(i(t+
iβ)H)B) = ωβ(τt(B)A). Hence, there is an analytic function Fβ(A,B; z) defined on the strip
{z ∈ C : 0 ≤ Imz ≤ β} with boundary values

Fβ(A,B; t) = ωβ(Aτt(B)), Fβ(A,B; t+ iβ) = ωβ(τt(B)A). (3.1)

This turns our to be the property that extends naturally to the algebraic setting.

3.1 Definition

It will be useful to first introduce some terminology.

Definition 11. A pair (A, τt) is a C*-dynamical system if A is a C*-algebra with an identity
and R 3 t 7→ τt is a strongly continuous group of *-automorphisms of A, namely

‖τt+ε(A)− τt(A)‖ → 0 (ε→ 0)

for all A ∈ A.

It follows from the strong continuity that τt is generated by a *-derivation, τt(A) = etδA:

Proposition 22. Let δt : A → A, A 7→ δt(A) = t−1(τt(A)−A), let

D(δ) := {A ∈ A : lim
t→0+

δt(A) exists},

and define

δ : D(δ)→ A
A 7→ δ(A) = lim

t→0+
t−1(τt(A)−A).
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Then, δ is a closed, densely defined map such that

1 ∈ D(δ) and δ(1) = 0,

δ(AB) = δ(A)B +Aδ(B),

δ(A∗) = δ(A)∗.

In fact, just as there is a one-to-one correspondence between self-adjoint generators and
strongly continuous unitary groups on a Hilbert space, there a correspondence between *-
derivations and strongly continuous groups of *-automorphisms on a C*-algebra. This is Hille-
Yosida’s theorem. Recall that A is an analytic element for a derivation δ if A ∈ D(δn) for all
n ∈ N and

∑∞
n=0

tn

n!‖δ
nA‖ <∞, for 0 ≤ t < tA.

Theorem 23. Let A be a C*-algebra with a unit. A densely defined, closed operator δ on A
generates a strongly continuous groups of *-automorphisms if and only if

δ is a *-derivation

δ has a dense set of analytic elements

‖A+ λδ(A)‖ ≥ ‖A‖, ∀λ ∈ R, A ∈ D(δ).

In the case of quantum mechanics with a finite number of degrees of freedom, τt(A) =
exp(itH)A exp(−itH) is strongly continuous if and only if H is bounded, in which case it is
also norm continuous (see exercises). The associated derivation δ := i[H, ·] is bounded and
everywhere defined. In fact, as a consequence of the closed graph theorem, an everywhere
defined derivation necessarily generates a norm-continuous *-automorphism.

Definition 12. Let (A, τt) be a C*-dynamical system. A state ω on A is a (τ, β)-KMS state
for β > 0 if, for any A,B ∈ A, there exists a function Fβ(A,B, z), analytic in Sβ := {z ∈ C :
0 < Imz < β}, continuous on Sβ, and satisfying the KMS boundary condition (3.1).

We shall say that A is an analytic element for τt if the map A 7→ τt(A) extends to an analytic
function on C.

Theorem 24. Let (A, τt) be a C*-dynamical system. A state ω on A is a (τ, β)-KMS state if
and only if there exists a dense, τ -invariant *-subalgebra D of analytic elements for τt such that

ω(BA) = ω(Aτiβ(B)). (3.2)

The following proposition shows that the condition of analyticity is never a true restriction.

Proposition 25. Let (A, τt) be a C*-dynamical system, and let δ be its generator. For any
A ∈ A and m ∈ N, let

Am :=

√
m

π

∫
R
τt(A)e−mt

2
dt.

Then

1. Am is analytic for τt

2. Am is analytic for δ

3. The *-subalgebra Aτ := {Am : A ∈ A,m ∈ N} is dense
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Proof. First of all, ‖τt(A)‖ exp(−mt2) = ‖A‖ exp(−mt2) ∈ L1(R), so that Am is well-defined,
Am ∈ A and ‖Am‖ ≤ ‖A‖. Moreover,

τs(Am) =

√
m

π

∫
R
τt(A)e−m(t−s)2

dt.

The right-hand-side extends to an analytic function, with ‖r.h.s.‖ ≤ ‖A‖ exp(−m(Imz)2), which
can be used to extend τs(Am) to τz(Am) for all z ∈ C. Moreover, by dominated convergence,

dn

dsn
τs(Am)

∣∣∣∣
s=0

=

√
m

π

∫
R
τt(A)

dn

dsn
e−m(t−s)2

∣∣∣∣
s=0

dt =

√
m1+n

π

∫
R
τt(A)Hn(t)e−mt

2
dt

were Hn are the Hermite polynomials, so that Am ∈ D(δn) for all n ∈ N, and Am is analytic
for δ. Finally,

An −A =
1√
π

∫
R

(
τt/
√
n(A)−A

)
e−t

2
dt→ 0 (n→∞)

by the strong continuity of τt and dominated convergence.

Proof of Theorem 24. Necessity. Let A ∈ A, B ∈ Aτ and ω be a (τ, β)-KMS state. Then z 7→
G(z) = ω(Aτz(B)) is analytic and G(t) = Fβ(A,B; t) for t ∈ R. Hence z 7→ G(z)− Fβ(A,B; z)
is analytic on Sβ, continuous on Sβ ∪R and vanishes on R. By the Schwarz reflection principle,
it extends to an analytic function on the double strip Sβ ∪ S−β that vanishes on R. Hence it
equals zero everywhere, and by continuity also on Sβ, that is Fβ(A,B; z) = ω(Aτz(B)) for all
z ∈ Sβ. In particular, setting z = iβ yields ωβ(BA) = ωβ(Aτiβ(B)).
Sufficiency. First, for A,B ∈ D, z 7→ F (A,B; z) := ω(Aτz(B)) is analytic on C. Since
τt(B) ∈ D,

F (A,B; t) = ω(Aτt(B)), F (A,B; t+ iβ) = ω(Aτiβ(τt(B))) = ω(τt(B)A),

by (3.2). Now, |ω(Aτz(B))| ≤ ‖A‖‖τ iImz(B)‖ so that F (A,B; z) is bounded on Sβ and Hadamard’s
three lines theorem yields supz∈Sβ F (A,B; z) ≤ ‖A‖‖B‖. For arbitrary A,B ∈ A, let An →
A,Bn → B, with An, Bn ∈ D. Since

F (An, Bn; z)− F (Am, Bm; z) = F (An −Am, Bn; z) + F (Am, Bn −Bm; z),

so that F (An, Bn; z) is uniformly Cauchy in Sβ. Its limit is therefore analytic on Sβ and
continuous on its closure, and it still satisfies the KMS boundary condition.

Clearly, the Gibbs state on a finite dimensional Hilbert space satisfies the KMS condition.
As we shall see later, it is also the unique KMS state in this case1.

The following theorem shows that a KMS state passes the simplest test for an equilibrium
state: it is invariant under time evolution. Mathematically, this is also useful as it implies the
unitary implementability of the dynamics in the GNS representation.

Proposition 26. Let (A, τt) be a C*-dynamical system and let ω be a (τ, β)-KMS state. Then
ω ◦ τt = ω for all t ∈ R.

Proof. Let A ∈ Aτ . The function z 7→ g(z) = ω(τz(A)) is analytic. By Theorem 24,

g(z + iβ) = ω(1τiβ(τz(A))) = ω(τz(A)1) = g(z).

Hence, g is a periodic function along the imaginary axis, and moreover, |g(t+iα)| ≤ ‖τt+iα(A)‖ =
‖τiα(A)‖ ≤ sup0≤γ≤β ‖τiγ(A)‖, which is finite. Hence, g is analytic and bounded on C, so that
it is constant by Liouville’s theorem. This extends to all observables by continuity.

1This shows once again that there cannot be a phase transition for quantum spin systems in finite volume.
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3.2 The energy-entropy balance inequality

Just as the Gibbs state is characterised by the variational principle as being a minimiser of the
free energy, general KMS states are equivalently defined by satisfying the energy-entropy balance
inequality (EEB). In this section, (A, τt) is a C*-dynamical system, and δ is the generator of τt.
We start with a simple observation.

Lemma 27. If a state ω over A is such that −iω(A∗δ(A)) ∈ R for all A ∈ D(δ), then ω◦τt = ω.

Proof. Since ω(B∗δ(B)) is purely imaginary, and δ(B∗) = δ(B)∗, ω(δ(B∗B)) = ω(B∗δ(B)) +
ω(B∗δ(B)) = 0. Hence, with the continuity of ω,

ω(τt(A
∗A))− ω(A∗A) =

∫ t

0
ω(δ(τs(A

∗A)))ds = 0.

Hence, the statement holds for all positive elements of A, and further extends to all of A by
noting that any observable is a linear combination of four positive elements.

Let f be the Fourier transform of f̌ ∈ C∞c (R). By Paley-Wiener’s theorem, f is analytic in
C and |f(z)| ≤ Cn(1 + |z|n) exp(R|Im(z)|) for all n ∈ N. Let

τf (A) :=

∫
R
f(t)τt(A)dt ∈ D(δ)

since it is analytic for δ. Let ω be a τt-invariant state and H =
∫
R λdP (λ) is the GNS Hamil-

tonian satisfying HΩ = 0. We have

ω(A∗τf (A)) =

∫
R
f(t)〈π(A)Ω, eitHπ(A)Ω〉dt =

∫
R
f̌(λ)dµA(λ) (3.3)

where dµA(λ) = 〈π(A)Ω, dP (λ)π(A)Ω〉 is the spectral measure associated with π(A)Ω. Simi-
lary, ω(τf (A)A∗) =

∫
R f̌(λ)dνA(λ) where dνA(λ) = 〈π(A∗)Ω, dP (−λ)π(A∗)Ω〉. Moreover, the

analyticity of z 7→ f(z)ω(A∗τz(A)) and the KMS condition yield

ω(A∗τf (A)) =

∫
R
f(t+ iβ)ω(τt(A)A∗)dt.

The right hand side is also equal to
∫
R f̌(λ) exp(βλ)dνA(λ). Since this and (3.3) hold for any

test function f̌ , we obtain
dµA
dνA

(λ) = eβλ. (3.4)

Theorem 28. A state ω over A is a (τ, β)-KMS state if and only if

−iβω(A∗δ(A)) ≥ ω(A∗A) ln
ω(A∗A)

ω(AA∗)

for all A ∈ D(δ).

Proof. We only prove ⇒. First observe that ω(A∗δ(A)) = i〈π(A)Ω, Hπ(A)Ω〉 and

β
〈π(A)Ω, Hπ(A)Ω〉
〈π(A)Ω, π(A)Ω〉

=

∫
R βλdµA(λ)∫
R dµA(λ)

.

By Jensen’s inequality,

exp

(
−
∫
R βλdµA(λ)∫
R dµA(λ)

)
≤
∫
R exp(−βλ)dµA(λ)∫

R dµA(λ)
=

∫
R dνA(λ)∫
R dµA(λ)

=
ω(AA∗)

ω(A∗A)

if ω is a (τ, β)-KMS state by (3.4). Hence, exp(iβω(A∗δ(A))/ω(A∗A)) ≤ ω(AA∗)/ω(A∗A).
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Corollary 29. Let A be a C*-algebra with a unit and {τn}n∈N be a sequence of strongly con-
tinuous one-parameter groups of automorphisms of A such that

τnt (A)→ τt(A) (n→∞)

for all A ∈ A, t ∈ R, where τt is a strongly continuous one-parameter group of automorphisms
of A. If {ωn}n∈N is a sequence of (τn, β)-KMS states, then any weak-* limit point of {ωn} is a
(τ, β)-KMS state.

Proof. See exercises.

Simple example. τn = τΛn the dynamics of a quantum spin system in a finite volume Λn, such
that Λn → Γ as n → ∞2, generated by a Hamiltonian HΛn . The unique KMS state is the
Gibbs state with density matrix Zn(β)−1 exp(−βHΛn). If the infinite volume dynamics exists,
τΛn(A)→ τΓ(A), then the limiting thermodynamic states are (τΓ, β)-KMS states.

3.3 Passivity and stability

Definition 13. Let (A, τt) be a C*-dynamical system. A state ω on A is a passive state if
−iω(U∗δ(U)) ≥ 0 for any U ∈ U0(A) ∩ D(δ). Here, U0(A) is the connected component of the
identity in the set of all unitary elements of A.

Proposition 30. If ω is a (τ, β)-KMS state, then ω is passive.

Proof. Choose A = U ∈ U0(A) ∩D(δ) in the EEB inequality.

In order to have equivalence in the proposition above, one needs to require complete passivity,
namely that ⊗Ni=1ω is passive as a state on the tensored system (⊗Ni=1A,⊗Ni=1τt) for all N ∈ N.

Interpretation in the case dim(H) <∞, where ω(A) = Tr(ρβA) where ρβ = Z(β)−1 exp(−βH)
with Z(β) = Tr exp(−βH), the Gibbs state. Consider a time dependent Hamiltonian H(t) =
H(t)∗, t ∈ [0, T ] such that H(0) = H(T ) = H, an let U be the associated unitary evolution on
[0, T ]. The change in energy between t = 0 and t = T is given by

Wβ := Tr(UρβU
∗H)− Tr(ρβH) = Tr(ρβU

∗[H,U ]) = −iωβ(U∗δ(U)) ≥ 0

since the KMS state is passive. Passivity expresses a basic thermodynamic fact: the total work
done by the system on the environment in an arbitrary cyclic process, −Wβ, is non-positive on
average.

Definition 14. Let (A, τt) be a C*-dynamical system with generator δ0. A local perturbation
δV of δ0 is given by

δV = δ0 + i[V, ·], D(δV ) = D(δ0),

for a V = V ∗ ∈ A.

Using Thm 23, one can show that δV generates a strongly continuous group of automor-
phisms τV . Since d

dsτ
0
−s(τ

V
s (A)) = τ0

−s(i[V, τ
V
s (A)]), we have Duhamel’s formula

τVt (A) = τ0
t (A) +

∫ t

0
τ0
t−s(i[V, τ

V
s (A)])ds,

2Λn ⊂ Λm if n ≤ m, and ∀x ∈ Γ, ∃n0 ∈ N such that x ∈ Λn ∀n ≥ n0
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which can be solved iteratively yielding Dyson’s expansion

τVt (A) = τ0
t (A) +

∞∑
k=1

∫
0≤t1≤···≤tk≤t

i[τ0
t1(V ), i[τ0

t2(V ), · · · i[τ0
tk

(V ), τ0
t (A)] · · · ]]dt1 · · · dtk. (3.5)

In fact, writing λV for λ ∈ C, the series is norm convergent for all λ ∈ C, t ∈ R, A ∈ A and
defines an analytic function λ 7→ τλVt (A).

The unitary element solving

−i∂tΓ
V
t = ΓVt τ

0
t (V ), ΓV0 = 1,

has the following intertwining property τVt (A)ΓVt = ΓVt τ
0
t (A). Solving the differential equation

iteratively again yields the expansion

ΓVt = 1 +
∞∑
k=1

ik
∫

0≤t1≤···≤tk≤t
τ0
t1(V ) · · · τ0

tk
(V )dt1 · · · dtk.

In fact, all above results continue to hold for a time dependent perturbation Vt. A cyclic
perturbation of a C*-dynamical system is a norm-differentiable family [0, T ] 3 t 7→ Vt = V ∗t ∈ A
such that V0 = VT = 0, Vt ∈ D(δ) and δ(dVt/dt) = dδVt/dt.

Definition 15. The work performed on the system along a cyclic Vt, t ∈ [0, T ] is

W :=

∫ T

0
ω ◦ τVt

(
dVt
dt

)
dt.

where ω is the initial state of the system.

By the boundary condition, 0 =
∫ T

0 ∂t
(
ω ◦ τVt (Vt)

)
dt, so that

W = −
∫ T

0
ω ◦ τVt

(
δ0 (Vt)

)
dt (3.6)

since δV (Vt) = δ0(Vt). Also note that by the first law of thermodynamics, this also equals the
total heat given by the system to the environment.

Lemma 31. Let (A, τt) be a C*-dynamical system with generator δ0 and R 3 t 7→ Vt = V ∗t ∈ A
be a norm-differentiable local perturbation such that Vt = 0 if t ∈ (−∞, 0] ∪ [T,∞), Vt ∈ D(δ0)
and δ0(dVt/dt) = dδ0Vt/dt. Then W = −iω(ΓVT δ

0(ΓV ∗T )).

Proof. Under the given assumption, ΓVt ∈ D(δ0), and δ0(ΓVt ) is differentiable with dδ0(ΓVt )/dt =
δ0(dΓVt /dt) (without proof). But then

−iω(ΓVT δ
0(ΓV ∗T )) =

∫ T

0
ω
(
−i∂t(Γ

V
t )δ0(ΓV ∗t ) + ΓVt δ

0
(
−i∂t(Γ

V ∗
t )
))

=

∫ T

0
ω
(
ΓVt τ

0
t (V )δ0(ΓV ∗t )− ΓVt δ

0(τ0
t (V )ΓV ∗t )

)
= −

∫ T

0
ω
(
ΓVt τ

0
t (δ0(V ))ΓV ∗t

)
.

Conclude by (3.6).

Theorem 32. Under the assumptions of the previous lemma, if ω is a (τ, β)-KMS state for
some β, then W ≥ 0.
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Proof. By Lemma 31, W = −iω(ΓVT δ
0(ΓV ∗T )). Since ΓVT is unitary and ω is a (τ, β)-KMS state,

W ≥ 0 by passivity, Proposition 30.

We now consider a cyclic machine working between two reservoirs at inverse temperature
β1 ≤ β2. The C*-dynamical system is given by A = A1 ⊗A2 and τ0 = τ1 ⊗ τ2, with generator
δ0 = δ1 ⊗ 1 + 1⊗ δ2. The initial state is ω = ω1 ⊗ ω2 where ωi is a (τi, βi)-KMS state, and it is
a (σ, 1)-KMS state for the dynamics σt := τ1,β1t⊗ τ2,β2t with generator γ = β1δ1⊗ 1 + 1⊗ β2δ2.
The machine is represented by a cyclic perturbation Vt ∈ A temporarily coupling the reservoirs.
The total work on the system decomposes in W = Q1 +Q2 where

Q1 = −iω(ΓVT (δ1 ⊗ 1)(ΓV ∗T )), Q2 = −iω(ΓVT (1⊗ δ2)(ΓV ∗T ))

are the amounts of heat given to both reservoirs. Now,

β1Q1 + β2Q2 = −iω(ΓVT (β1δ1 ⊗ 1 + 1⊗ β2δ2)(ΓV ∗T )) = −iω(ΓVT γ(ΓV ∗T )) ≥ 0,

or Q1(T2 − T1) ≥ −WT1. Assuming now that Q1 < 0 (heat pumped out of the hot reservoir)

−W
−Q1

≤ T1 − T2

T1

which is Carnot’s statement of the second law of thermodynamics, namely a bound on the
efficiency of a cyclic machine initially at equilibrium (ratio of the work performed by the system
to the heat pumped out of the hot reservoir).

Stability of the thermal equilibrium refers to a number of results revolving around the fact
that the dynamics applied to a state ‘close to thermal’ drives the system back to equilibrium.
In fact, under additional assumption, it can be shown that this property is equivalent to the
KMS condition.

The first result is about structural stability, and can be proved by perturbation theory in
the line of (3.5).

Proposition 33. Let (A, τt) be a C*-dynamical system, and ω a (τ, β)-KMS state on A. Then,
for every local perturbation V , there is a (τV , β)-KMS state ωV and

1. ωV is ω-normal

2. there is C > 0 such that ‖ω − ωV ‖ ≤ C‖V ‖

3. the map ω 7→ ωV is a bijection from the set of (τ, β)-KMS states onto the set of (τV , β)-
KMS states

See exercises for a proof in the finite dimensional case. Note in particular that local perturba-
tions cannot induce a phase transition.

Dynamical stability needs more assumptions to hold, usually in the form of asymptotic
abelianness of the dynamical system, namely [A, τt(B)]→ 0 in some sense.

Theorem 34. Let V = V ∗ ∈ A and let ω be a (τV , β)-KMS state, and let ω̃ be a weak-*
accumulation point of ω ◦ τ0

t as t → ∞. If limt→∞ ‖[V, τ0
t (A)]‖ = 0 for all A ∈ A, then ω̃ is a

(τ0, β)-KMS state.

Proof. By lower semicontinuity of (u, v) 7→ u ln(u/v), we have

ω̃(A∗A) ln
ω̃(A∗A)

ω̃(AA∗)
≤ lim inf

t→∞
ω ◦ τ0

t (A∗A) ln
ω ◦ τ0

t (A∗A)

ω ◦ τ0
t (AA∗)

≤ lim inf
t→∞

−iβω(τ0
t (A)∗δV (τ0

t (A)))

= −iβω̃(A∗δ0(A)) + β lim inf
t→∞

ω(τ0
t (A)∗[V, τ0

t (A)]) = −iβω̃(A∗δ0(A))

by the EEB inequality, the decomposition δV = δ0 + i[V, ·] and δ0 ◦ τ0 = τ0 ◦ δ0.
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Note that the theorem does not state whether the limit of ω ◦ τ0
t exists. However, it does so

in two simple cases. Firstly, if there is a unique (τ0, β)-KMS state, since then all accumulation
points of ω ◦ τ0

t must be equal. Secondly, if [V, τ0
t (A)] decays fast enough:

Proposition 35. Let V = V ∗ ∈ A and let ω be a τV -invariant state. Then ω± := limt→±∞ ω◦τ0
t

exists (in the weak*-topology) if and only if R 3 t 7→ ω([V, τ0
t (A)]) is integrable at ±∞ for all

A ∈ A.

Proof. Integrating d
dsτ

V
−s(τ

0
s (A)) = −τV−s(i[V, τ0

s (A)]) and using the invariance of ω yields

ω(τ0
t2(A))− ω(τ0

t1(A)) = −i

∫ t2

t1

ω([V, τ0
s (A)])ds

for all A ∈ A.

In particular, a sufficient condition for the existence of the limit is the integrability of the map
R 3 t 7→ ‖[V, τ0

t (A)]‖. We finally state a sharp result. Let ω be an arbitrary reference state.

(A) For any self-adjoint element V of a norm-dense *-subalgebra A0 ⊂ A, there is a λV > 0
such that ∫

R
‖[V, τλVs (A)]‖ds <∞, |λ| ≤ λV , A ∈ A0.

(S) For any self-adjoint element V of a norm-dense *-subalgebra A0 ⊂ A, there is a λV > 0
such that if |λ| ≤ λV , there exists a τλV -invariant, ω-normal state such that

ωλV+ := lim
t→∞

1

T

∫ T

0
ω ◦ τλVt dt exists, and lim

λ→0
‖ω − ωλV ‖ = 0

Theorem 36. Assume that ω is a factor state and that (A) holds. Then (S) holds if and only
if ω is a (τ0, β)-KMS state for some β.

In that case, by a variant of Theorem (34), ωλV+ is a (τλV , β)-KMS state.

3.4 On the set of KMS states

Let (A, τt) be a C*-dynamical system with an identity. For any β > 0, let Sβ(A) be the set of
all (τ, β)-KMS states. The physical intuition is as follows: for small β, there is a unique thermal
state, corresponding to the high temperature phase. As β grows, the set of Sβ(A) becomes
non trivial, and any state can be decomposed into pure thermodynamic phases. This picture is
made mathematically precise in the following theorem:

Theorem 37. Let (A, τt) be a C*-dynamical system with an identity, and let Sβ(A) be the set
of all (τ, β)-KMS states, for β > 0. Then,

1. Sβ(A) is convex and weakly-* compact

2. The normal extension of ω to π(A)′′ is a KMS state

3. ω ∈ Sβ(A) is an extremal point if and only if ω is a factor state,
and if ω′ is an ω-normal, extremal KMS state, then ω = ω′

4. π(A)′ ∩ π(A)′′ consists of time-invariant elements
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5. If ω ∈ Sβ(A) is such that the GNS Hilbert space is separable, there is a unique prob-
ability measure µ on Sβ(A), which is concentrated on the extremal points, such that
ω =

∫
Sβ(A) νdµ(ν)

Proof. (Sketch, incomplete) (1). If ω1, ω2 ∈ Sβ(A), A,B ∈ A, with associated analytic functions
Fβ,1(A,B, ·), Fβ,1(A,B, ·), then the analytic function λFβ,1(A,B, ·) + (1 − λ)Fβ,2(A,B, ·) has
boundary values associated to λω1 + (1 − λ)ω2 so that Sβ(A) is convex. Moreover, the EEB
inequality implies that Sβ(A) is a weakly-* closed subset of the weakly-* compact set E(A),
hence Sβ(A) is weakly-* compact.

(2) Follows by density of π(A) in π(A)′′ in the weak topology, Corollary 7.
(3) If ω is not a factor state, then there exists a projection 1 6= P ∈ π(A)′ ∩ π(A)′′. We

first claim that ω(P ) 6= 0. Otherwise 0 = ω(P ) = ‖PΩ‖2 so that PΩ = 0. But then, for
any A,B ∈ A, ω(A∗PB) = 〈π(A)Ω, Pπ(B)Ω〉 = 0 since P ∈ π(A)′, and hence P = 0 by
cyclicity of Ω. Now, ω = ω(P )ω1 + ω(1 − P )ω2, where ω1(A) = ω(PA)/ω(P ) and ω2(A) =
ω((1−P )A)/ω(1−P ), is a non-trivial decomposition of ω. Moreover, ω(P )ω1(BA) = ω(PBA) =
ω(BPA) = ω(PAτiβ(B)) = ω(P )ω1(Aτiβ(B)) so that ω is not extremal in Sβ(A).

(4). Let C ∈ π(A)′ ∩ π(A)′′ and consider the normal extension of ω to π(A)′′. Repeating
the proof of Proposition 26, t 7→ ω(τt(A

∗B)C) is constant. Hence, t 7→ ω(τt(A
∗)Cτt(B)) =

〈π(A)Ω, U∗t π(C)Utπ(B)Ω〉 = ω(A∗τt(C)B) is constant for all A,B ∈ A.
(5). That any KMS state can be decomposed into extremal KMS states follows from con-

vexity and Krein-Milman’s theorem. Uniqueness is more involved.

The algebra π(A)′′ ⊃ π(A) contains both microscopic and macroscopic observables. Ele-
ments in the centre π(A)′ ∩π(A)′′ induce ‘superselection rules’: If S = S∗ ∈ π(A)′ ∩π(A)′′ with
S 6= λ · 1, the Hilbert space decomposes into components on which S is a constant multiple
of the identity, while these components with different ‘quantum numbers’ are not connected
by any observable. In the case of KMS states, (3) above states that such observables associ-
ated with quantum numbers are constant in time. Furthermore, in a factor, any such S is a
constant multiple of the identity. Hence, by (2) above, extremal KMS states associate fixed,
non-fluctuating values to all quantum numbers: they are ‘macroscopically pure’ states.

Theorem 38. Let (A, τt) be a C*-dynamical system, and let ω be a faithful (τ, β)-KMS state,
for β > 0. Let α be a *-automorphism of A. Then,

1. ω ◦ α is a (α−1 ◦ τ ◦ α, β)-KMS state

2. If ω ◦ α = ω, then α ◦ τt = τt ◦ α for all t ∈ R

3. If α ◦ τt = τt ◦ α for all t ∈ R, then ω ◦ α is a (τ, β)-KMS state

Proof. Let F be the analytic function associated to ω. Then Fα(A,B; z) := F (α(A), α(B); z)
is an analytic function in Sβ, continuous on Sβ and such that, for t ∈ R,

Fα(A,B; t) = ω(α(A)τt(α(B))) = (ω ◦ α)(A(α−1 ◦ τt ◦ α)(B))

Fα(A,B; t+ iβ) = ω(τt(α(B))α(A)) = (ω ◦ α)((α−1 ◦ τt ◦ α)(B)A)

which shows that ω ◦ α is a (α−1 ◦ τ ◦ α, β)-KMS state. In order to prove (2), we use the fact
that the τ -group with respect to which a ω is a KMS state is unique3. But ω is simultaneously
a (τ, β)-KMS state and by (1) a (α−1 ◦ τ ◦α, β)-KMS state, hence τt = α−1 ◦ τt ◦α. Finally, (3)
follows immediately from (1).

3In the case dim(H) <∞, a faithful state is given by a ρ > 0, which determines uniquely H := −β−1 ln ρ and
hence the dynamics.
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3.5 Symmetries

Definition 16. Let (A, τt) be a C*-dynamical system. A *-automorphism α of A is a symmetry
if α ◦ τt = τt ◦ α for all t ∈ R.

In this case, and by 1 above, if ω is a (τ, β)-KMS state, then so is ω ◦α. Hence, in the presence
of a symmetry the set Sβ(A) is invariant under τ for any fixed β > 0. In particular, if there is a
unique (τ, β)-KMS state, then it is itself invariant and one says that the symmetry is unbroken at
β. If, on the other hand, there is a (τ, β)-KMS state which is not invariant, then the symmetry
is said to be broken and there is more than one equilibrium state at β, indicating a phase
transition. Examples are the breaking of rotational SU(2)-symmetry in magnetic transitions,
translational Rd symmetry in liquid-solid transitions. Here is a general criterion for the absence
of symmetry breaking:

(A) There is a sequence Un ∈ A of unitary elements of the algebra such that Un ∈ D(δ) and

lim
n→∞

‖α(A)− U∗nAUn‖ = 0, A ∈ A.

(Bi) There is M such that ‖δ(Un)‖ ≤M

(Bii) All (τ, β)-KMS states are α2-invariant and there is M such that ‖U∗nδ(Un)+Unδ(U
∗
n)‖ ≤M

If (A) holds, one says that α is almost inner.

Theorem 39. Let α be a symmetry of (A, τt). If (A) and either (Bi) or (Bii) are satisfied,
then all (τ, β)-KMS states are α-invariant for all β > 0.

Note that the symmetry can still be broken in the ground state, β =∞.

Proof. Let ω be a (τ, β)-KMS state, H the associated Hamiltonian such that HΩ = 0 and let
H =

∫
λdP (λ). For any bounded interval I ⊂ R, let {ȟn}n∈N be a sequence of real-valued C∞c

functions supported on intervals [an, bn], with |bn − an| ≤ 1 and such that
∑

n ȟn(λ)2 = 1 for
all λ ∈ I. Let An := τhn(A), which is analytic for τt. First of all,

ω(A∗nAn) =

∫
hn(t)hn(−s)〈eiHsπ(A)Ω, eiHtπ(A)Ω〉dtds =

∫ bn

an

ȟn(λ)2dµA(λ)

as well as ω(AnA
∗
n) =

∫ bn
an
ȟn(λ)2dνA(λ). Hence, by the measure-theoretic KMS property,

ω(A∗nAn) ≥ exp(βan)ω(AnA
∗
n) and further

ω(A∗nAn) ln
ω(A∗nAn)

ω(AnA∗n)
≥ βanω(A∗nAn).

Similarly, −iω(A∗nδ(An)) =
∫ bn
an
λȟn(λ)2dµA(λ), and hence,

−iω(A∗nδ(An)) ≤ bnω(A∗nAn)

We further write the EEB inequality for the observable U∗mAn, n,m ∈ N, namely

ω(A∗nAn) ln
ω(A∗nAn)

ω(U∗mAnA
∗
nUm)

≤ −iβω(A∗nUmδ(U
∗
m)An)− iβω(A∗nδ(An))

and use the two inequalities above to obtain (note the position of * in the numerator!)

ω(A∗nAn) ln
ω(AnA

∗
n)

ω(U∗mAnA
∗
nUm)

≤ −iβω(A∗nUmδ(U
∗
m)An) + β(bn − an)ω(A∗nAn) (3.7)
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and bn − an ≤ 1.
Assumption (Bi). Since |ω(A∗nUmδ(U

∗
m)An)| ≤ ‖δ(Um)‖ω(A∗nAn) ≤Mω(A∗nAn), (3.7) yields

ω(AnA
∗
n) ≤ eβ(M+1)ω(U∗mAnA

∗
nUm)

and letting m→∞, ω(AnA
∗
n) ≤ eβ(M+1)(ω ◦ α)(AnA

∗
n). Summing over n, we have proved that

there exists a constant C = C(β,M) such that

ω(AA∗) ≤ C(ω ◦ α)(AA∗),

which extends to all A ∈ A. By the remark after Lemma 9, there is a T ∈ πω◦α(A)′ such that
ω(A) = 〈TΩω◦α, πω◦α(A)TΩω◦α〉, which shows that ω is (ω ◦ α)-normal. If ω is an extremal
KMS state, then ω ◦α is also extremal so that they must be equal by Theorem 37(3). Since this
holds for all extremal KMS state, the general result holds by decomposition, Theorem 37(5).
Assumption (Bii). We repeat the procedure above with the state ω ◦ α, sum (3.7) and the
similar bound with Um ↔ U∗m, proceed as above and obtain

((ω ◦ α)(AnA
∗
n))2 ≤ eβ(M+2)ω(AnA

∗
n)(ω ◦ α2)(AnA

∗
n). (3.8)

Hence, (ω ◦ α)(A) ≤ C̃ω(A). Hence (ω ◦ α) is ω-normal and the conclusion holds as above.
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Chapter 4

Ideal quantum gases

4.1 The ideal Fermi gas

4.2 The ideal Bose gas & Bose-Einstein condensation
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Chapter 5

Renormalisation

5.1 The renormalisation idea

5.2 Block spin transformation in the Ising model

27



Chapter 6

Phase transitions in quantum spin
systems

Let A =
⋃

Λ∈F(Γ)AΛ be the C*-algebra of a quantum spin system.

Definition 17. An interaction on A is a map defined on F(Γ) such that for X ∈ F(Γ),
Φ(X) = Φ(X)∗ ∈ AX . Furthermore, for any non-negative function ξ : F(Γ)→ [0,∞),

Bξ :=

{
Φ : ‖Φ‖ξ := sup

x∈Γ

∑
X3x
‖Φ(X)‖ξ(X) <∞

}
.

is a Banach space of interactions. Finally, an N -body interaction is defined by the condition
Φ(X) = 0 if |X| 6= N .

In the case of a N body interaction, one writes Φ(x1, . . . , xN ), xi ∈ Γ. A simple example is
ξ(X) = 1 implying an integrable decay. We shall use the following: Let D be the maximal
degree in Γ and diam(X) := max{d(x, y) : x, y ∈ X} for any X ∈ F(Γ). For any λ > 0, denote

Bλ := Bξλ , ξλ(X) := |X|D2|X|eλdiam(X).

Now, for Λ ∈ F(Γ), the Hamiltonian is the sum of interactions within Λ, namely

HΛ :=
∑
X⊂Λ

Φ(X)

and for A ∈ A,
τΦ,Λ
t (A) = eitHΛAe−itHΛ

is a strongly continuous one parameter group of *-automorphisms of A. Let {Λn}n∈N be a
sequence in F(Γ) such that Λn ⊂ Λm is n ≤ m and for any x ∈ Γ there exists n0 such that
x ∈ Λn for all n ≥ n0.

Theorem 40. Let λ > 0 and Φ ∈ Bλ. There exists a strongly continuous one parameter group
of *-automorphisms {τΦ

t : t ∈ R} of A such that, for any A ∈ A,

lim
n→∞

‖τΦ,Λn
t (A)− τΦ

t (A)‖ = 0,

for all t ∈ R. The convergence is uniform for t in a compact set and the limit is independent of
the sequence {Λn}n∈N.
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The theorem is an immediate consequence of the Lieb-Robinson bound : For Φ ∈ Bλ there is
vλ > 0, such that for any A ∈ AX , B ∈ AY , and X ∪ Y ∈ Λ,

‖[τΦ,Λ
t (A), B]‖ ≤ C‖A‖‖B‖min{|X|, |Y |} exp(−λ(d(X,Y )− vλ|t|))

where the constant C is independent of Λ. This is a propagation estimate: up to exponentially
small corrections, the support of A grows linearly with time, with velocity vλ. Since, for n ≥ m
with A ∈ AΛ,Λ ⊂ Λm,

τΦ,Λn
t (A)− τΦ,Λm

t (A) =

∫ t

0

d

ds

(
τΦ,Λn
s ◦ τΦ,Λm

t−s (A)
)
ds =

∫ t

0
τΦ,Λn
s (δΦ,Λn − δΦ,Λm)τΦ,Λm

t−s (A)ds

and δΦ,Λn − δΦ,Λm =
∑

X:X∩(Λn\Λm)6=∅[Φ(X), ·], we have

‖τΦ,Λn
t (A)− τΦ,Λm

t (A)‖ ≤
∫ t

0

∑
x∈Λn\Λm

∑
X3x
‖[Φ(X), τΦ,Λm

t−s (A)]‖ds

≤ C|Λ|‖A‖
∑

x∈Λn\Λm

∑
X3x
‖Φ(X)‖ exp(−λ(d(X,Λ)− vλ|t|)

≤ C̃|Λ|‖A‖‖Φ‖λ exp(−λd(Γ \ Λm,Λ)) exp(λvλ|t|).

This vanishes uniformly as m→∞ for t in a compact interval, and {τΦ,Λn
t (A)}n∈N is Cauchy.

A typical example is the Heisenberg models. Here Γ = Zd, and Hx = C2s+1 is the rep-
resentation space of SU(2) with generator S1, S2, S3. The Heisenberg Hamiltonian is given
by

HΛ,J,h =
∑

{x,y}∈Λ×Λ

3∑
i=1

J ixyS
i
xS

i
y − h

∑
x∈Λ

S3
x, h > 0,

with some decay on |J ixy| in d(x, y). This defines a translation invariant Hamiltonian if J ixy = J i

for all {x, y} ∈ Γ× Γ and an SU(2)-invariant interaction if J ixy = Jxy for i = 1, 2, 3.

6.1 The theorem of Mermin & Wagner

We now apply Theorem 39 to the concrete case of low dimensional quantum spin systems and
obtain a general form of the theorem of Mermin and Wagner. Note that this only one version
of the theorem, namely about the absence of symmetry breaking, which does not necessarily
exclude other types of phase transitions. The original proof in the generality given here is due
to Fröhlich-Pfister. For simplicity, we consider Hx = H for all x ∈ Γ.

LetG be a compact connected Lie group and letG 3 g 7→ Ug be a strongly continuous unitary

representation of G on H. This induces a group of *-automorphisms of A{x} by α
{x}
g (A) =

U∗gAUg, and the tensor product representation ⊗x∈ΛUg induces the tensor action αΛ
g on AΛ,

for any Λ ∈ F(Γ). Hence, this defines a strongly continuous group of *-automorphisms on Aloc

which extends by continuity to {αg : g ∈ G} on A. Note that the complete system is rotated by
the same element g, a ‘global gauge transformation’. A typical example is H = C2s+1 carrying
the spin-s representation of G = SU(2), namely Ug = exp(2πig · S), where g is an element of
the unit ball and S is the vector of spin matrices.

Theorem 41. Let A be as above with Γ = Z2, {αg : g ∈ G} the action of the compact connected
Lie group G, and Φ a G-invariant two-body interaction, namely

αg(Φ(x, y)) = Φ(x, y), for all x, y ∈ Z2, g ∈ G.
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If

sup
x∈Z2

∑
y∈Z2

‖Φ(x, y)‖d(x, y)2 <∞

then for any 0 < β <∞ and any (τΦ, β)-KMS state ω,

ω ◦ αg = ω, for all g ∈ G.

For a translation and rotation invariant interaction, the sharp condition is ‖Φ(x, y)‖ ≤ Cd(x, y)−4:
there are models with an interaction decaying as d(x, y)−4+ε for which phase transitions are
known to occur.

Proof. We consider a one dimensional subgroup H of G, and since G is compact, H ' R/Z = S1.
We consider the generator S = S∗ ∈ L(H), namely Uφ = exp(iφS) for φ ∈ [0, 2π).

For m ∈ N, let Λm = [−m,m] ∩ Z2. Let φ be fixed, and let ϕm : Z2 → [0, 2π) be given by

ϕm(x) =


φ x ∈ Λm

φ(2−max{|x1|, |x2|}/m) x = (x1, x2) ∈ Λ2m \ Λm

0 otherwise

and finally

Uφ(m) :=
⊗
x∈Λ2m

Ux(ϕm(x)) ∈ AΛ2m ⊂ D(δ),

which slowly interpolates between a full rotation on Λm and no rotation outside of Λ2m.
Let A ∈ Aloc and m0 := min{m ∈ N : A ∈ AΛm}. We have Uφ(m)∗AUφ(m) = αφ(A) for all

m ≥ m0, so that Assumption (A) of Theorem 39 holds. We now claim that Assumption (Bii)
also holds. Noting that for A ∈ AΛ, δ(A) = i

∑
{x,y}∩Λ6=∅[Φ(x, y), A], we compute

Uφ(m)∗δ(Uφ(m)) = i
∑

{x,y}∈Z2\Nm

Uφ(m)∗Φ(x, y)Uφ(m)− Φ(x, y)

where Nm = {{x, y} : x, y ∈ Λm or x, y ∈ Z2 \Λ2m} by the symmetry of the interaction and the
support of Um(φ). Denote Uφ(m)∗δ(Uφ(m)) + Uφ(m)δ(Uφ(m)∗) = i

∑
x,y ∆m(x, y). Note that

ϕm(x)Sx+ϕm(y)Sy =
ϕm(x) + ϕm(y)

2
(Sx+Sy)+

ϕm(x)− ϕm(y)

2
(Sx−Sy) := Em(x, y)+Om(x, y)

with [Em(x, y), Om(x, y)] = 0 since [Sx, Sy] = 0. Since, moreover, Em(x, y) generates the same
rotation by (ϕm(x) + ϕm(y))/2 at both x and y, and by the symmetry of the interaction,

Uφ(m)∗Φ(x, y)Uφ(m) = e−iOm(x,y)e−iEm(x,y)Φ(x, y)eiEm(x,y)eiOm(x,y) = e−iOm(x,y)Φ(x, y)eiOm(x,y).

which has the commutator expansion

Uφ(m)∗Φ(x, y)Uφ(m)− Φ(x, y) =
∑
k≥1

ik

k!
adkOm(x,y)(Φ(x, y)).

Noting that Uφ(m)δ(Uφ(m)∗) = U−φ(m)∗δ(U−φ(m)) and Om(x, y) is odd under φ → −φ, all
odd terms in the series of ∆m(x, y) cancel, yielding the estimate

‖∆m(x, y)‖ ≤ 2
∑
k≥1

1

(2k)!

1

22k
|ϕm(x)− ϕm(y)|2k‖ad2k

Sx−Sy(Φ(x, y))‖.
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It remains to observe that |ϕm(x)− ϕm(y)| ≤ |φ|min{1, d(x, y)/m}, so that

|ϕm(x)− ϕm(y)|2k ≤ |φ|2k
(
d(x, y)

m

)2

and to carry out the spatial sum to obtain∑
{x,y}∈Z2\Nm

‖∆m(x, y)‖ ≤ 4e2‖S‖|φ|

m2

∑
x∈Λ2m

∑
y∈Z2

‖Φ(x, y)‖d(x, y)2 =: M <∞

which is finite by assumption after estimating the sum by (2m+ 1)2 supx∈Z2

∑
y∈Z2(· · · ).

For any n ∈ N, we claim that ω ◦ απ/2n = ω. This follows from a recursive application of
Theorem 39 starting with the observation that α2

π = id. Finally, the set D := {φ ∈ S1 : φ =∑N
n=0 an(π/2n), an ∈ Z, N ∈ N} is dense in S1. For any A ∈ A, the function φ 7→ ξA(φ) :=

ω(αφ(A)−A) is continuous and ξA(φ) = 0 if φ ∈ D. Hence ξA(φ) = 0 for all φ ∈ S1.

Possible extensions following the same ideas with adapted assumptions include one-dimensional
models, short range N -body interactions, and non-translation invariant models with possibly
different representations of G at different points of Γ.

6.2 Existence of a phase transition in the Heisenberg model

In this section, we shall prove the existence of a phase transition at positive temperature for the
antiferromagnetic Heisenberg model, following the original proof of Dyson-Lieb-Simon (1978).
The proof relies on a spectral property of the Hamiltonian, reflection positivity which fails for the
ferromagnetic model. Although a proof of phase transition in that case is still an open problem,
recent progress has been made by Corregi, Giuliani and Seiringer (2013), who compute the free
energy at low temperature.

We consider Λ := {−L/2, · · · , L/2}d, L ∈ 2N understood with periodic boundary conditions,
and let EΛ be the set of nearest neighbour pairs. The translation invariant, spin-S Heisenberg
Hamiltonian is written as

H
(u)
Λ := −2

∑
{x,y}∈EΛ

(
S1
xS

1
y + uS2

xS
2
y + S3

xS
3
y

)
, u ∈ [−1, 1].

The case u = 1 is the ferromagnet, u = 0 the ‘XY model’, while u = −1 locally unitarily
equivalent to the antiferromagnet on a bipartite lattice. Indeed, assume that Λ = ΛA ∪ ΛB,
with {x, y} ∈ EΛ implies x ∈ ΛA, y ∈ ΛB or x ∈ ΛB, y ∈ ΛA and note that local rotations by
π along the 2 axis, generated by S2

x, yield exp(−iπS2
x)Sjx exp(iπS2

x) = (−1)jSjx. It follows that

conjugation U∗ΛH
(−1)
Λ UΛ with the unitary UΛ :=

∏
x∈ΛA

exp(iπS2
x) yields the antiferromagnet.

Given the Gibbs state ω
(u)
β,Λ, we are interested proving the existence of long-range order

lim
|x|→∞

lim inf
Λ→Zd

ω
(u)
β,Λ(S3

0S
3
x) > 0, d ≥ 3, (6.1)

for β sufficiently large1. This implies for the the magnetisation MΛ := |Λ|−1
∑

x∈Λ S
3
x that

lim inf
Λ→Zd

ω
(u)
β,Λ(M2

Λ) > 0, d ≥ 3, β sufficiently large

1In the case of the antiferromagnet,

(−1)d(0,x)ωantiferro
β,Λ (S3

0S
3
x) = (−1)d(0,x)ω

(−1)
β,Λ (U∗ΛS

3
0S

3
xUΛ) = ω

(−1)
β,Λ (S3

0S
3
x)

which remains uniformly bounded away from 0. This is called ‘Néel ordering’.
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which corresponds to the intuition of macroscopic fluctuations in the bulk magnetisation and the
presence of multiple phases. In fact, a little more abstract nonsense would show that long-range
order is inconsistent with the invariance of any extremal KMS state.

Theorem 42. Consider H
(u)
Λ for u ∈ [−1, 0] and spin S. Then,

1

|Λ|
∑
x∈Λ

ω
(u)
β,Λ(S3

0S
3
x) ≥ 1

3
S(S + 1)− 1√

2|Λ|

∑
k∈Λ∗\{0}

√
E(u)(k)

E(k)
− 1

2β|Λ|
∑

k∈Λ∗\{0}

1

E(k)
(6.2)

where Λ∗ is the lattice dual to Λ and

E(k) := 2

d∑
i=1

(1−cos(ki)), E(u)(k) :=

d∑
i=1

(1−u cos(ki))ω
(u)
β,Λ(S1

0S
1
ei)+(u−cos(ki))ω

(u)
β,Λ(S2

0S
2
ei).

Note that for any state ν, |ν(SjxS
j
y)| ≤ ν((Sjx)2)1/2ν((Sjy)2)1/2 ≤ ν(~S2) = S(S + 1) so that

|E(u)(k)| ≤ 4dS(S + 1). Furthermore, 1 − cos(x) = (1/2)x2 + O(x4) as x → 0 so that E(k)−1

is integrable if d ≥ 3, and E(k)−1/2 is integrable if d ≥ 2. Hence, if d ≥ 3, there exist
0 < Cd, κd <∞ such that

lim inf
Λ→Zd

1

|Λ|
∑
x∈Λ

ω
(u)
β,Λ(S3

0S
3
x) ≥ 1

3
S(S + 1)− κd

√
S(S + 1)− Cd

β

and the lower bound is strictly positive for S large enough and all β ≥ βc = βc(d, S). In turn,
this implies long-range order, (6.1). Note that improved estimates allow to extend the statement
to d ≥ 3 and all S ∈ (1/2)N.

Let v : Zd → R and h := ∆v, namely hx :=
∑

y:{x,y}∈EΛ
(vy − vx). In l2(Λ),

〈f,−∆g〉 =
∑

{x,y}∈EΛ

(fy − fx)(gy − gx),

and in particular 〈v,−∆v〉 = ‖h‖2.
Let

H
(u)
Λ (v) := H

(u)
Λ −

∑
x∈Λ

hxS
3
x,

to which we associate the partition function Z
(u)
β,Λ(v) = Tr

(
exp(−βH(u)

Λ (v))
)

and

Z̃
(u)
β,Λ(v) := Z

(u)
β,Λ(v)e−

1
4
β〈v,−∆v〉

Let R be a reflection map of Λ and let Λ = Λ1 ∪ Λ2 with Λ2 = RΛ1. Furthermore, v1 := v �Λ1

, v2 := v �Λ2 and we shall write v = v1|v2.
We now exhibit the full structure of the proof.

Lemma 43. If u ≤ 0, then for any reflection R,

Z̃
(u)
β,Λ(v1|v2)2 ≤ Z̃(u)

β,Λ(v1|Rv1)Z̃
(u)
β,Λ(Rv2|v2)

Lemma 44. If u ≤ 0,

Z
(u)
β,Λ(v) ≤ Z(u)

β,Λ(0)e
1
4
β〈v,−∆v〉
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Lemma 45. If u ≤ 0, and for any k ∈ Λ∗ \ {0},

̂
(S3

0 , S
3
· )

(u)
β (k) ≤ (2βE(k))−1

where (·, ·)β denotes Duhamel’s two-point function,

(A,B)
(u)
β :=

1

Z
(u)
β,Λ

∫ 1

0
Tr
(

e−βsH
(u)
Λ Ae−β(1−s)H(u)

Λ B
)
ds

Lemma 46. For any k ∈ Λ∗ \ {0} such that
̂

(S3
0 , S

3
x)

(u)
β (k) ≤ (2βE(k))−1,

̂
ω

(u)
β,Λ(S3

0S
3
· )(k) ≤

√
E(u)(k)

2E(k)
+

1

2βE(k)
.

Proof of Theorem 42. Let CΛ(x) := ω
(u)
β,Λ(S3

0S
3
x). We have

1

|Λ|
∑
x∈Λ

ω
(u)
β,Λ(S3

0S
3
x) = ĈΛ(0) = CΛ(0)−

∑
k∈Λ∗\{0}

ĈΛ(k).

Furthermore, we note that CΛ(0) = ω
(u)
β,Λ((S3

0)2) = (1/3)ω
(u)
β,Λ(~S2) = (1/3)S(S + 1), which

concludes the proof with Lemma 46.

We should remark that in finite volume, the Gibbs state has all symmetries of the Hamil-

tonian since its density matrix is a function of the Hamitonian. In particular, ω
(u)
β,Λ(S3

0) = 0

or ω
(u)
β,Λ(MΛ) = 0 and their respective limits likewise. The limiting state must be a non-trivial

superposition of extremal KMS states which break the SU(2) symmetry. Here, we consider

msp := lim infΛ→Zd ω
(u)
β,Λ(|MΛ|), namely the spontaneous magnetisation. One could also add a

‘transverse magnetic field’ to the Hamiltonian, namely h
∑

x∈Λ S
3
x and study either the residual

magnetisation, mres := limh→0+ lim infΛ→Zd ω
(u)
β,h,Λ(MΛ), namely whether the system ‘remem-

bers’ an external magnetic field which breaks the symmetry. It turns out that mres ≥ msp and

msp = 0 if and only if lim infΛ→Zd ω
(u)
β,Λ(M2

Λ) = 0, see exercises.

Proof of Lemma 43. Let H = K⊗K, with dimK <∞, and let A,B,C1, . . . Cl, D1, . . . Dl ∈ L(K)
be real matrices and h1, . . . hl ∈ R. Then,

Tr
[
eA⊗1+1⊗B−

∑l
k=1(Ck⊗1−1⊗Dk−hk)2

]2

≤ Tr
[
eA⊗1+1⊗A−

∑l
k=1(Ck⊗1−1⊗Ck)2

]
Tr
[
eB⊗1+1⊗B−

∑l
k=1(Dk⊗1−1⊗Dk)2

]
(6.3)

Indeed (in the case l = 1), we first apply Trotter’s product formula

eA⊗1+1⊗B−(C⊗1−1⊗D−h)2
= lim

n→∞

(
e

1
n
A⊗1e

1
n

1⊗Be−
1
n

(C⊗1−1⊗D−h)2
)n

and the operator identity

e−M
2

= (4π)−1/2

∫
R

e−s
2/4eisMds
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to write the trace as

(4π)−n/2
∫
ds1 · · · dsnTr

[(
e

1
n
A⊗1e

i
s1√
n
C⊗1 · · · e

1
n
A⊗1e

i sn√
n
C⊗1

)]
Tr
[(

e
1
n

1⊗Be
i
s1√
n

1⊗D · · · e
1
n

1⊗Be
i sn√
n

1⊗D
)]

e
i
h
∑n
i=1 si√
n e−

∑n
i=1 s

2
i

4

where we noted that matrices acting on different factors commute, that Tr(M ⊗ 1)(1 ⊗ N) =
Tr(M ⊗ 1)Tr(1 ⊗ N), and the reality of the matrices to take the complex conjugate (not the
adjoint) without reversing the order of the matrices. Cauchy-Schwarz’s inequality for the s-
integrals now yields

| · |2 ≤ 1

(4π)n/2

∫
Tr

n∏
i=1

e
1
n
A⊗1e

i
si√
n
C⊗1

Tr
n∏
i=1

e
1
n

1⊗Ae
i
si√
n

1⊗C
e−

∑n
i=1 s

2
i

4 · 1

(4π)n/2

∫
(A↔ B).

Reversing the above steps yields the claim.
We now write the Heisenberg Hamiltonian as

H
(u)
Λ (v) =

∑
{x,y}∈EΛ

(
(S1
x − S1

y)2 + (
√
uS2

x −
√
uS2

y)2 + ((S3
x + vx/2)− (S3

y + vy/2))2
)

+ EΛ −
1

4

∑
{x,y}∈EΛ

(vx − vy)2.

where EΛ = −d
∑

x∈Λ

(
(S1
x)2 + u(S1

x)2 + (S3
x)2
)
, and the remaing term is removed in the defi-

nition of Z̃
(u)
β,Λ(v). The lemma now follows from (6.3) with HΛ = HΛ1 ⊗HΛ2 and

A = −β
∑

{x,y}∈EΛ1

(
(S1
x − S1

y)2 + (
√
uS2

x −
√
uS2

y)2 + ((S3
x + vx/2)− (S3

y + vy/2))2
)
− βEΛ1

B = −β
∑

{x,y}∈EΛ2

(
(S1
x − S1

y)2 + (
√
uS2

x −
√
uS2

y)2 + ((S3
x + vx/2)− (S3

y + vy/2))2
)
− βEΛ2

C1
i =

√
βS1

xi , D1
i =

√
βS1

yi , C2
i =

√
βuS2

xi , D1
i =

√
βuS2

yi ,

C3
i =

√
β(S3

xi + vxi/2), D3
i =

√
β(S3

yi + vyi/2)

where {xi, yi} denote the edges crossing the boundary between Λ1 and Λ2. Note that S1, S3 are
real and S2 is imaginary, so that the above matrices are real for u ≤ 0.

Proof of Lemma 44. We prove the equivalent statement Z̃
(u)
β,Λ(v) ≤ Z̃(u)

β,Λ(0), which can be inter-

preted as a variational problem, namely v = 0 is a maximiser of the functional v 7→ Z̃
(u)
β,Λ(v).

Since Z̃
(u)
β,Λ : l∞(Λ) → R is continuous, bounded and lim‖v‖∞→∞ Z̃

(u)
β,Λ(v) = 0, there is a max-

imiser. Let v̄ be a maximiser and Z̄ = Z̃
(u)
β,Λ(v̄). If Z̃

(u)
β,Λ(v̄1|Rv̄1) < Z̄, then Lemma 43 yields

Z̄2 < Z̄Z̃
(u)
β,Λ(Rv̄2|v̄2), namely Z̃

(u)
β,Λ(Rv̄2|v̄2) > Z̄, which is a contradiction. Hence, if v̄ is a max-

imiser, so is v̄1|Rv̄1. Since this holds for any reflection R, this implies inductively that the con-

stant field is a maximiser, and in fact any constant field is so, since Z̃
(u)
β,Λ(v+const) = Z̃

(u)
β,Λ(v).

Proof of Lemma 45. Lemma 44 implies that ∂2/∂λ2Z̃
(u)
β,Λ(λv)|λ=0 ≤ 0, or equivalently

(
Z

(u)
β,Λ(0)

)−1 ∂2

∂λ2
Z

(u)
β,Λ(λv)

∣∣∣∣
λ=0

≤ β

2
〈v,−∆v〉.
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Since Z
(u)
β,Λ(λv) = Tr exp(−β(H

(u)
Λ −λ〈S3,∆v〉)), Duhamel’s formula (exp(F (t))′ =

∫ 1
0 exp(sF )F ′ exp((1−

s)F )ds yields

∂2

∂λ2
Z

(u)
β,Λ(λv)

∣∣∣∣
λ=0

= β2

∫ 1

0
Tr
(

e−βsH
(u)
Λ 〈S3,∆v〉e−β(1−s)H(u)

Λ 〈S3,∆v〉
)
ds,

namely

2β
(
〈S3,−∆v〉, 〈S3,−∆v〉

)(u)

β
≤ 〈v,−∆v〉,

for any field v. Let vx(k) = cos(kx), k ∈ Λ∗ \ {0} for which −∆v(k) = E(k)v(k). Hence,

2βE(k)
∑
x,y∈Λ

cos(kx) cos(ky)(S3
x, S

3
y)

(u)
β ≤

∑
x∈Λ

cos2(kx).

It remains to use the translation invariance of (S3
x, S

3
y)

(u)
β to express the right hand side as∑

x

cos2(kx)
∑
z

cos(kz)(S3
0 , S

3
z )

(u)
β +

∑
x

cos(kx) sin(kz)
∑
z

sin(kz)(S3
0 , S

3
z )

(u)
β .

The second term vanishes as (S3
0 , S

3
z )

(u)
β = (S3

z , S
3
0)

(u)
β . Similarly, the sum over z in the first one

equals the Fourier transform of (S3
0 , S

3
· )

(u)
β , which yields the claim.

Proof of Lemma 46. This follows from ‘Falk-Bruch’s inequality’, namely

ω
(u)
β,Λ(A∗A+AA∗) ≤

√
(A∗, A)

(u)
β ω

(u)
β,Λ([A∗, [H,A]) + 2(A∗, A)

(u)
β

applied to A = |Λ|−1
∑

x exp(−ikx)S3
x. Indeed

ω
(u)
β,Λ(A∗A+AA∗) = 2

̂
ω

(u)
β,Λ(S3

0 , S
3
· )

(u)
β (k)

ω
(u)
β,Λ([A∗[H,A]) = 4βE(u)(k)

(A∗, A)
(u)
β =

̂
(S3

0 , S
3
· )

(u)
β (k)

and we conclude by the bound on
̂

(S3
0 , S

3
· )

(u)
β (k).
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Chapter 7

Computer simulations
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