
















































































































Mathematisches Institut
der Universität München

WiSe 2015/16 Mathematical Quantum Mechanics

Prof. Dr. S. Bachmann
Dr. R. Helling

18.11.2015

Scaling arguments for Lieb-Thirring inequalities

Let V  0 and E0  E1  · · ·  0 be the negative eigenvalues of ��+V .
We look for the only possible power ↵ for which a bound of the type
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holds uniformly for all V .
Let � > 0. We note that if  is an eigenvector ((��+M

V

) )(x) = E (x),
then under the scaling x 7! y = �x, the function  ̃(y) =  (�x) solves
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and the claim follows from
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On the other hand, (1) must hold for Ẽ, Ṽ with the same constant. Hence
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which implies that �2� = �2↵ + d, namely

↵ = � +
d

2
.

Instead of scaling the variables (the ‘passive’ transformation), one could
also scale the wavefunction (the ‘active’ transformation), namely consider
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with E
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E. This yields again
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with the same conclusion.
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