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Abstract

We show that the variational problem for the bending of an elas-
tic perfetcly plastic plate under vertical load does not always have a
solution.

1 Introduction

Let Ω ⊂ R2 the middle surface of a thin flat and plastic perfectly
plastic plate in its undisturbed state and let f : Ω 7→ R be an outer
force acting onto it in perpependicular direction. Let v0 : Ω 7→ R
describe the streching of the plate at the boundary. In the equilibrum
state the vertical displacement (bending) w : Ω 7→ R of the surface
and the corresponding moments inside the plate M : Ω 7→ M (with
M = R2×2

sym we denote the space of symmetric 2× 2-matrices, equipped
with the scalar product τ : χ = τijχij) satisfy the equations

1) div divM = f

2)
F(M) ≤ 0 ∇2w = B M + Λ
Λ : (m−M) ≤ 0 ∀F(m) ≤ 0

3)
w = v0

∇w = ∇v0
on ∂Ω

where Λ : Ω 7→ M can be considered as the plastic part of the curvature
and B : M 7→ M is a linear, symmetric and positively defined mapping.
The mapping

F : M 7→ R convex

is the given yield function of the material. We consider the easiest case
when

F(τ) = √
τijτij − 1

which is known as Hencky’s constituent law. We also set B = Id.
By means of duality we can construct variational problems that allow
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to seek w and M indenpendently (see [2]). According to the terminol-
ogy in [3] we call these problems P and P∗ respectively. The problem
P for w has the form

I(v) → min{I(v) | v ∈ v0 + W 2 ,1
0 (Ω)} = inf P

I(v) := G(∇2v)− (f, v)
v0 ∈ W 2 ,1 (Ω)

with G : L1(Ω, M) 7→ R

G(n) = sup
m : Ω 7→ M,
F(m) ≤ 0 a.e.

{(n, m)− 1
2

∫
Ω

mijmij dx}

=
∫

Ω

g0(|n|) dx with g0(t) =
{

1
2 t2 for t < 1
t− 1

2 for t ≥ 1

(where ( , ) we denotes the duality product in Lp(Ω, X)×Lp′
(Ω, X)).

Thus I is a functional with asymptotically linear growth. This feature
gives rise to the special difficulities of the problem because it forces us
to seek a solution in the nonreflexive space W 2 ,1 (Ω) where the classic
direct conclusion

coercivity1 + weak lower semicontinuity of I ⇒ existence of a
minimizing element

fails by the lack of weak compactness for bounded sequences. This
means that we cannot expect I to attain its minimum and in this note
we give an example where in fact P has no solution.

1.1 Repetition of Duality Theory

Therefore we make use of duality theory ([3]) which provides a strong
tool for characterising the weak solutions of P and also for analyzing its
regularity properties ([5, 6]). The process of relaxing P consists of two
steps. First we construct a Lagrangian l : W 2 ,1 (Ω)× L∞(Ω , M) → R

l(v,m) = < m,∇2v > −(f, v)−
∫

g∗(m) dx

where

g∗0(s) =
{

1
2s2 for s ≤ 1
+∞ for s > 1

which gives a representation for P and P∗ as inf-sup and sup-inf prob-
lems for l respectively.
Following the scheme in [4] the second step is to perform integration by
parts in l which allows to extend l in v (under simultanious restriction
in m). We obtain the extended lagrangian L : (v0 + W 1 ,2

0 (Ω))× (K ∩
D) → R

L(v,m) =< div div m− f, v− v0 > −
∫

Ω

g∗(m)dx+(m,∇2v0)− (f, v0)

with
1The coercivity of I can, for instance, be guaranteed by the Save-Load-Condition:

∃M1 ∈ L∞(Ω, M) : (div divM1 = f ∃δ1 > 0 : |M1| ≤ 1− δ1 a.e. in Ω)



K := {m ∈ L∞(Ω, M) : |m(x)| ≤ 1 a.e. in Ω}
D := {m ∈ L∞(Ω, M) : div divm ∈

(
W 1 ,2

0 (Ω)
)∗
}.

(< , > denotes the duality product in X ×X∗ )
The corresponding inf-sup problem Prel

Irel(v) → min{Irel(v) | v ∈ v0 + W 1 ,2
0 (Ω)} = inf Prel

Irel(v) = sup
m∈K∩D

L(v,m)

is the relaxed problem for P and we find that

(v,M) is a saddle point of L, i.e.

L(v, n) ≤ L(v,M) ≤ L(u, M) (1)
∀(u, n) ∈ (v0 + W 1 ,2

0 (Ω))× (K ∩D)

⇔
{

v is a solution to Prel

M is a solution to P∗

Finally we can state the following existence result which contains a
necessary condition of weak solutions:

Theorem (Existence and Neccesary Condition of Weak Solutions)
Suppose that f ∈ (W 1 ,2

0 (Ω))∗, −∞ < (f, v0) < +∞ and let the save-
load condition hold. Then every minimizing sequence of I in v0 +
W 2 ,1

0 (Ω) contains a subsequence that converges weakly in W 1 ,2 (Ω)
and for any 1 ≤ p < 2 in W 1 ,p(Ω) strongly to a solution w ∈
v0 + W 1 ,2

0 (Ω) of Prel.
Moreover we have inf P = supP∗ = inf Prel and if w is any weak so-
lution of P then (w,M) is a saddle point of the extended lagrangian
L in (v0 + W 1 ,2

0 (Ω))× (K ∩D) where M is the solution of P∗.

2 A Counterexample

We now give a concrete setting of the problem which does not posses
a solution in W 2 ,1 (Ω). We chose

Ω = B(0, r1) \B(0, r0) and f ≡ 0 in Ω

where 0 < r0 < r1 < 1 are to be fixed later. We define w0 ∈ C∞(Ω)

w0(x) = m0(r) = 1
4(log r1+1)

(
r2 log r − r2

1(2 log r1 + 1) log r
)

r = |x|

As for any u(x) = m(r) with r = |x| trivially

∆u(x) = 1
r

d
dr r d

dr m(r)
(∇2u(x))ij = (m′′(r)

r2 − m′(r)
r3 )xixj + m′(r)

r δij

|∇2u(x)|2 = (m′′(r))2 +
(

m′(r)
r

)2

we see that
∆2w0 = 0 in Ω

|∇2w0(x)| = 1
∇w0(x) = 0

(∇2w0(x))ij = m′′
0 (r1)

r2
1

xixj

on ∂B(0, r1)



In order to fix r0 and r1 we calculate

|∇2w0(x)|2 =(
1

4(log r1+1)

)2 (
8 log2 r + 16 log r + 4(2 log r1 + 1) r2

1
r2 + 2(2 log r1 + 1)2 r4

1
r4 ) + 10

)
for |x| = r and thus

d
d|x| |∇

2w0(x)|2| |x|=r1
=

(
1

4(log r1+1)

)2
32
r1

(
− log r1 − log2 r1

)
> 0

for r1 close to 1

Consequently we can find 0 < r0 < r1 < 1 such that

|∇2w0(x)| < 1 in Ω

Let now v0 ∈ W 2 ,1 (Ω) be the solution to the equation of linearily
elastic deformation

∆2v0 ≡ 0 in Ω
v0 = w0 on ∂Ω ∇v0 = ∇w0 on ∂B(0, r0)

∇v0 = m′′
0(r1)ν on ∂B(0, r1)

where ν denotes the outer normal unit vector in ∂B(0, r1). Then with
this choice of Ω, g0, f, v0 and B = Id : M 7→ M we can state:

P has no solution in W 2 ,1 (Ω).

First let us show that w0 and M = ∇2w0 are solutions of Prel and P∗
respectively. We remember that this is equivalent to M ∈ K ∩D and

L(w0,m) ≤ L(v,M) ∀ (v,m) ∈ (W 1 ,2
0 (Ω) + v0 )× (K ∩D) (2)

with

L(v,m) =< div div m− f, v − v0 > −
∫

g∗(m)dx + (m,∇2v0)−M(v0)

In our case f ≡ 0, thus M(v) = 0 for all v ∈ v0 + W 2 ,1
0 (Ω) and f = 0

in (W 1 ,2
0 (Ω))∗. Further by definition we have for all u ∈ W 2 ,1

0 (Ω)

< div divM,u > =
∫

M : ∇2u dx =
∫

div divMu dx

=
∫

div div∇2w0u dx =
∫

∆2w0u dx = 0

Thus trivially

div divM = 0 ∈
(
W 1 ,2

0 (Ω)
)∗

and we can write

< div divM,v − v0 >=< div divM,w0 − v0 >= 0

Thus (2) takes the form

< div div m,w0−v0 > −
∫

(g∗(m)−g∗(M))+(m−M,∇2v0) ≤ 0∀m ∈ (K∩D)

(3)
Using the special outlook of g∗ and the elementary inequality

− 1
2 |τ1|2 + 1

2 |τ2|2 ≤ τ2 : (τ2 − τ1)

we see that (3) will follow from

< div div m,w0−v0 > +
∫

M : (M−m) dx+(m−M,∇2v0) ≤ 0∀m ∈ (K∩D)

(4)
In order to show this we first assumme m ∈ C∞(Ω, M)∩K ∩D. Again
by definition of div divm we have for all u ∈ W 2 ,1

0 (Ω)



< div divm,u > =
∫

m : ∇2u dx
= −

∫
div m · ∇u dx

≤ ||div m||L2(Ω,R2)||u||W 1,2(Ω)

and thus by approximation

< div divm,w0 − v0 >= −
∫

divm∇(w0 − v0) dx

= −
∫

∂B(0,r1)
m : (∇(w0 − v0)� ν)dH1(x) +

∫
m : (∇2w0 −∇2v0) dx

where we make use of the notation

Rm×n 3 ξ � ζ = (ξiζj) if (ξ, ζ) ∈ Rm × Rn

Inserting this into (4) and writing M = ∇2w0 gives

−
∫

∂B(0,r1)
m : (∇(w0−v0)�ν)dH1(x)+

∫
∇2w0 : (∇2w0−∇2v0) dx ≤ 0

which upon integrating by parts twice and using ∆2w0 = 0 leads to∫
∂B(0,r1)

m : (∇(w0−v0)�ν)dH1(x) ≥
∫

∂B(0,r1)

∇2w0 : (∇(w0−v0)�ν)dH1(x)

(5)
We recall that ∇w0 = 0 on ∂B(0, r1) and thus

(∇(w0−v0)�ν)ij = −m′′(r1)(ν�ν)ij = −m′′(r1)
r2
1

xixj = −(∇2w0(x))ij

As |∇2w0| = 1 and |m| ≤ 1 this means that (5) is true.
For general m ∈ K ∩ D the assertion follows from approximation in
(4) with the standard smoothening mollifier. Clearly the sequence mρ

of mollified functions converges to m strongly in any Lp, 1 ≤ p < ∞,
and div div mρ converges to m weakly in (W 1 ,2

0 (Ω))∗.

Assume now that u0 ∈ W 2 ,1 (Ω) is a solution to P. Then u0 is also
a weak solution and by the uniqeness of the solution of P∗ this im-
plies that (u0,M) is a saddle point of L, i.e. we have the variatonal
inequality (2) with w0 replaced by u0. As |M | = |∇2w0| < 1 in Ω we
can test (2) with m = M + λ τ with any τ ∈ C∞

0 (Ω, M) and λ ∈ R,
|λ| ≤ C = C(τ) and thus we see that

∇2u0 = M = ∇2w0

This means that u0 = w0 + η · x + c with some constant η ∈ R2 and
c ∈ R. But as u0 = w0 on ∂Ω this implies

u0 = w0 a.e. in Ω

in contradiction to

∇u0 = ∇v0 6= ∇w0 = 0 on ∂B(0, r1)
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