The Zeta function and the Riemann Hypothesis Solution

Problem 37

Recall that $N(T)=\frac{T}{2 \pi}\left(\log \frac{T}{2 \pi}-1\right)+O(\log T)$. Hence

$$
\begin{aligned}
N(T+1)-N(T) & =\frac{T+1}{2 \pi}\left(\log \frac{T+1}{2 \pi}-1\right)-\frac{T}{2 \pi}\left(\log \frac{T}{2 \pi}-1\right)+O(\log T) \\
& =\frac{T+1}{2 \pi}\left(\log \frac{T+1}{2 \pi}\right)-\frac{T}{2 \pi}\left(\log \frac{T}{2 \pi}\right)-\frac{1}{2 \pi}+O(\log T) \\
& =\frac{T+1}{2 \pi}(\log (T+1))-\frac{T}{2 \pi}(\log T)-\frac{\log (2 \pi)}{2 \pi}-\frac{1}{2 \pi}+O(\log T)
\end{aligned}
$$

Hence it is enough to show that $T(\log (T+1)-\log (T))=O(\log (T))$. Consider $\lim _{T \rightarrow 0} \frac{1}{T \log (1 / T)}(\log (1+T))$ instead. By the rule of L^{\prime} Hôpitale we get

$$
\lim _{T \rightarrow 0} \frac{\log (1+T)}{T \log (1 / T)}=\lim _{T \rightarrow 0} \frac{\log (1+T)}{-T \log (T)}=\lim _{T \rightarrow 0} \frac{1 /(T+1)}{-\log (T)-1}=0 .
$$

Similarly $\lim _{T \rightarrow \infty} \log (1+1 / T)^{T} \rightarrow \log (e)=1$ and hence $\lim _{T \rightarrow \infty} T \log (1+1 / T) / \log (T)=0$.

Problem 38

We will use problem 9 , i.e. for $\operatorname{Re} s>0, s \neq 1, \forall x \geqslant 1$:

$$
\zeta(s)=\sum_{n \leqslant x} \frac{1}{n^{s}}+\frac{x^{1-s}}{x-1}+R(s, x), \quad|R(s, x)| \leqslant\left(2+\frac{|T|}{\sigma}\right) \frac{1}{x^{\sigma}} .
$$

Note that $\zeta(\sigma+i T)$ is bounded on $\left[2, \infty\left[\times[\pm 1, \pm 2]\right.\right.$ since $|\zeta(\sigma+i T)| \leqslant \sum_{n \geqslant 1} n^{-\sigma}<\infty$. As a holomorphic function it is also bounded on $[\delta, 2] \times[\pm 1, \pm 2]$. Hence we may assume $|T|>2$. For $x=|T|$ and $|T|>2, \sigma>\delta, 1>\delta>0$ we get

$$
\begin{aligned}
|\zeta(\sigma+i T)| & \leqslant \sum_{n \leqslant|T|} \frac{1}{n^{\sigma}}+\frac{|T|^{1-\sigma}}{|T|-1}+R(s,|T|), \quad|R(s,|T|)| \leqslant\left(2+\frac{|T|}{\sigma}\right) \frac{1}{|T|^{\sigma}} . \\
& \leqslant \int_{2}^{|T|+1} \frac{1}{(n-1)^{\delta}} \mathrm{d} n+1+|T|^{1-\delta}+2+\frac{1}{\delta}|T|^{1-\delta} \\
& \leqslant \frac{|T|^{1-\delta}-1}{1-\delta}+4|T|^{1-\delta}+\frac{1}{\delta}|T|^{1-\delta} \leqslant\left(4+\delta^{-1}+(1-\delta)^{-1}\right) \cdot|T|^{1-\delta} .
\end{aligned}
$$

