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Solution

Problem 37
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Hence it is enough to show that T (log(T + 1)− log(T )) = O(log(T )). Consider
limT→0

1
T log(1/T )

(log(1 + T )) instead. By the rule of L′Hôpitale we get
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−T log(T )
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− log(T )− 1
= 0.

Similarly limT→∞ log(1 + 1/T )T → log(e) = 1 and hence limT→∞ T log(1 + 1/T )/ log(T ) = 0.

Problem 38

We will use problem 9, i.e. for Re s > 0, s 6= 1,∀x > 1:
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Note that ζ(σ + iT ) is bounded on [2,∞[×[±1,±2] since |ζ(σ + iT )| 6
∑

n>1 n
−σ < ∞. As a

holomorphic function it is also bounded on [δ, 2] × [±1,±2]. Hence we may assume |T | > 2.
For x = |T | and |T | > 2, σ > δ, 1 > δ > 0 we get
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