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Problem 13

Let f(s) =
∑∞

n=1
an
ns
. First note that w.l.o.g. we may assume s0 = 0:

∑∞
n=1

an
ns

=
∑∞

n=1
an
ns0

1
ns−s0

=∑∞
n=1

ãn
ns0

with ãn = an
ns−s0

. Then
∑∞

n=1 an converges and by possibly changing a1, we may fur-
ther assume that A(x) =

∑
n6x an → 0.

By the Abel Summation Theorem∑
n6x

an
ns

=
A(x)

xs
+ s

∫ x

1

A(u)

us+1
d s,

∑
x<n6y

an
ns

=
A(y)

ys
− A(x)

xs
+ s

∫ y

x

A(u)

us+1
du,∣∣∣∣∣ ∑

x<n6y

an
ns

∣∣∣∣∣ 6 |A(y)|+ |A(x)|+ |s|
∫ y

x

|A(u)|
uσ+1

du,

for s ∈ Ang(0, α). Let ε > 0 and choose ε′ := ε(2 + cos(α)−1)−1. If x0 is su�ciently large, than
|A(z)| 6 ε′ for all z > x0. Hence for all s ∈ Ang(0, α) and x0 6 x < y∣∣∣∣∣ ∑

x<n6y

an
ns

∣∣∣∣∣ 6 2ε′ +

{ |s|ε′
σxσ

, falls s ∈ Ang(0, α) \ {0}
0, falls s = 0.

But x−dfvdfcσ 6 1 and hence

R
ϕ σ

s

s0 α

cos(α) 6 cos(ϕ) = σ/|s| and
∣∣∣∑x<n6y

an
ns

∣∣∣ 6 ε for s ∈ Ang(0, α).
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Problem 14

a) Assume that there is a minimal k > 1 such that ak 6= 0. Write f(s) = 1
ks

(
ak +

∑
n>k

an
(n/k)s

)
.

The series converges for s0 absolutely. Denote
∑

n>k
|an|

(n/k)σ0
= M <∞ and note that∣∣∣∣∣

∞∑
n=k+1

an
(n/k)s0+r

∣∣∣∣∣ 6
∞∑

n=k+1

|an|
(n/k)σ0

(
k

k + 1

)Re(r)

6M

(
k

k + 1

)Re(r)
Re(r)→∞−−−−−→ 0.

Hence we �nd a σ∗ such that
∣∣∣∑∞n=k+1

an
(n/k)s

∣∣∣ < |ak| for all Re(s) > σ∗. But then f(s) 6= 0

for Re(s) > σ∗ in contradiction to our assumption.

b) We repeat the proof from above for a1 = 1. Hence there is a σ0 > σa such that∑∞
n=2

|an|
nσ

< 1
2
holds for all Re(s) = σ > σ0. Thus the logarithm exists and con-

verges against log(1) = 0. Furthermore note that
(∑∞

n=1
an
ns

)k
converges absolutely for

Re s > σa(f) - the convolution of Dirichlet series. Hence we may interchange the limit in

log(f(s)) =
∞∑
k>1

(−1)k

k

(
∞∑
n=1

an
ns

)k

and get another Dirichlet series.
In the special of a multiplicate arithmetic function de�ning the Dirichlet series, we can
use

∑∞
n=1

an
ns

=
∏

p
1

1−app−s and

log(f(s)) = log

(∏
p

1

1− app−s

)
=
∑
p

log

(
1

1− app−s

)

=
∑
p

(
∞∑
k=1

akp
kpks

)
=
∞∑
k=1

(∑
p

akp
kpks

)
,

where we interchanged the summation of the absolutely convergent series. Finally note,
that pk = qm ⇒ p = q, k = m for arbitrary prime numbers p, q. Hence this is a Dirichlet
series.

Problem 15

a) By Abel Summation for A(x) = O(xα)∑
n6x

an
nα+ε

=
A(x)

xα+ε
+ α

∫ x

1

A(u)

uα+ε+1
du.

Thus
∑∞

n=1
an
nα+ε

exists for all ε > 0. Hence inf{α ∈ R : A(x) = O(xα)} > σc(f).
On the other hand if

∑∞
n=1

an
nα

exists, than
∣∣∑

n6x
an
nα

∣∣ < c for some c.

A(x) =
∑
n6x

ann
α

nα
= xα

∑
n6x

an
nα
− α

∫ x

1

uα−1
∑
n6u

an
nα

du.

|A(x)| 6 xα · c+ α

∫ x

1

uα−1 · c du = O(xα).

b) By part a) it will be enough to de�ne a sequence with α = inf{β ∈ R : A(x) = O(xβ)}.
Choose the ak rekursively by the following rule: ak = 1 if A(k − 1) < kα and ak = −1

if A(k − 1) > kα. Then we even have limx→∞
A(x)
xα

= 1 and A(x)
xα−ε

unbounded. Obviously
σa(f) = 1.
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Problem 16

a) We have

∑
k>1

µ(k)

k

∑
m>1

1

m
π(x1/km) =

∞∑
s=1

π(x1/s)

s

∑
k|s

µ(k)︸ ︷︷ ︸
δ1s

=
∞∑
s=1

π(x1/s)

s
δ1s = π(x),

where we used that
∑

k|s µ(k) = δ1s: s = 1 is obvious and for s =
∏r

i=1 p
ei
i > 2 and

s′ =
∏r

i=1 pi (pairwise disjoint factors):∑
k|s

µ(k) =
∑
k|s′

µ(k) =
∑

α∈{0,1}r
(−1)

∑r
i=1 αi = 0.

b) We use log ζ(s) =
∑∞

n=1
Λ1(n)
ns

with Λ1(n) =

{
1
m
, if n = pm, p prime

0, else.
. We �rst prove,

that π1(x) =
∑

n6x Λ1(x) by induction: It will be enough to check x ∈ N. The case x = 1
is clear. Now for x→ x+ 1 note that we have two cases:

x = pm ⇒ π1(x+ 1)− π1(x) =
1

m
= Λ1(x+ 1)

Note that in this case b(x+ 1)1/kc − bx1/kc 6= 0 if k|m but pm/k is prime only for k = m.
Furthermore

x 6= pm ⇒ π1(x+ 1)− π1(x) = 0 = Λ1(x+ 1)

In this case b(x + 1)1/kc − bx1/kc 6= 0 implies x + 1 = rk for a natural number r, that is
not a prime power.
We use Abel's Summation Theorem for Re s > 1∑

n6x

Λ1(n)

ns
=

∑
n6x Λ1(n)

xs
+ s

∫ x

1

∑
n6u Λ1(n)

us+1
du

=
π1(x)

xs
+ s

∫ x

1

π1(u)

us+1
du.

In the limit x → ∞ the �rst summand vanished, since π1(u) = π(x) + 1
2
π(
√
x) + ... =

O(x log(x)) for π(x) < x.

Note that π(x1/k) = 0 for x1/k < 2⇔ k > log(x)
log(2)

. Hence we immediately get

blog(x)/ log(2)c∑
k=1

1

k
π(x1/k) 6

blog(x)/ log(2)c∑
k=1

x1/k

k
6

log(x)x

log(2)
= O(x1+ε)

for every ε > 0. Finally we receive log ζ(s) = s
∫∞

1
π1(u)
us+1 du for Re(s) > 1.

Remark. Moreover observe that for x > 2m

blog(x)/ log(2)c∑
k=1

x
1
k
−1

k
−
blog(2x)/ log(2)c∑

k=1

(2x)
1
k
−1

k
>

1

2x1/2
− 1

2(2x)1/2
− (2x)−

blog(x)/ log(2)c
blog(x)/ log(2)c+1

1 +
⌊

log(x)
log(2)

⌋
3



>
1

2x1/2
− 1

2(2x)1/2
− 1

(1 +m)(2x)1/2
> 0

for m big enough. Hence
∑blog(x)/ log(2)c

k=1
x

1
k
−1

k
is uniformely bounded in x and therefore

π1(x) = O(x). Analogously we can show that
∑blog(x)/ log(2)c

k=2
x

1
k

k
= O(

√
x) and π1(x) =

π(x) +O(
√
x).
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