The Zeta function and the Riemann Hypothesis Solution

Problem 13

Let $f(s)=\sum_{n=1}^{\infty} \frac{a_{n}}{n^{s}}$. First note that w.l.o.g. we may assume $s_{0}=0$: $\sum_{n=1}^{\infty} \frac{a_{n}}{n^{s}}=\sum_{n=1}^{\infty} \frac{a_{n}}{n^{s_{0}}} \frac{1}{n^{s-s_{0}}}=$ $\sum_{n=1}^{\infty} \frac{\tilde{a}_{n}}{n^{s_{0}}}$ with $\tilde{a}_{n}=\frac{a_{n}}{n^{s-s_{0}}}$. Then $\sum_{n=1}^{\infty} a_{n}$ converges and by possibly changing a_{1}, we may further assume that $A(x)=\sum_{n \leqslant x} a_{n} \rightarrow 0$.
By the Abel Summation Theorem

$$
\begin{aligned}
& \sum_{n \leqslant x} \frac{a_{n}}{n^{s}}=\frac{A(x)}{x^{s}}+s \int_{1}^{x} \frac{A(u)}{u^{s+1}} \mathrm{~d} s, \\
& \sum_{x<n \leqslant y} \frac{a_{n}}{n^{s}}=\frac{A(y)}{y^{s}}-\frac{A(x)}{x^{s}}+s \int_{x}^{y} \frac{A(u)}{u^{s+1}} \mathrm{~d} u, \\
& \left|\sum_{x<n \leqslant y} \frac{a_{n}}{n^{s}}\right| \leqslant|A(y)|+|A(x)|+|s| \int_{x}^{y} \frac{|A(u)|}{u^{\sigma+1}} \mathrm{~d} u,
\end{aligned}
$$

for $s \in \operatorname{Ang}(0, \alpha)$. Let $\varepsilon>0$ and choose $\varepsilon^{\prime}:=\varepsilon\left(2+\cos (\alpha)^{-1}\right)^{-1}$. If x_{0} is sufficiently large, than $|A(z)| \leqslant \varepsilon^{\prime}$ for all $z \geqslant x_{0}$. Hence for all $s \in \operatorname{Ang}(0, \alpha)$ and $x_{0} \leqslant x<y$

$$
\left|\sum_{x<n \leqslant y} \frac{a_{n}}{n^{s}}\right| \leqslant 2 \varepsilon^{\prime}+ \begin{cases}\frac{|s| \varepsilon^{\prime}}{\sigma x^{\sigma}}, & \text { falls } s \in \operatorname{Ang}(0, \alpha) \backslash\{0\} \\ 0, & \text { falls } s=0\end{cases}
$$

But $x^{-d f v d f c \sigma} \leqslant 1$ and hence

$\cos (\alpha) \leqslant \cos (\varphi)=\sigma /|s|$ and $\left\lvert\, \sum_{\left.x<n \leqslant y \frac{a_{n}}{n^{s}} \right\rvert\, \leqslant \varepsilon \text { for } s \in \operatorname{Ang}(0, \alpha) ~}^{\text {. }}\right.$

Problem 14

a) Assume that there is a minimal $k \geqslant 1$ such that $a_{k} \neq 0$. Write $f(s)=\frac{1}{k^{s}}\left(a_{k}+\sum_{n>k} \frac{a_{n}}{(n / k)^{s}}\right)$. The series converges for s_{0} absolutely. Denote $\sum_{n>k} \frac{\left|a_{n}\right|}{(n / k)^{\sigma_{0}}}=M<\infty$ and note that

$$
\left|\sum_{n=k+1}^{\infty} \frac{a_{n}}{(n / k)^{s_{0}+r}}\right| \leqslant \sum_{n=k+1}^{\infty} \frac{\left|a_{n}\right|}{(n / k)^{\sigma_{0}}}\left(\frac{k}{k+1}\right)^{\operatorname{Re}(r)} \leqslant M\left(\frac{k}{k+1}\right)^{\operatorname{Re}(r)} \xrightarrow{\operatorname{Re}(r) \rightarrow \infty} 0
$$

Hence we find a σ^{*} such that $\left|\sum_{n=k+1}^{\infty} \frac{a_{n}}{(n / k)^{s}}\right|<\left|a_{k}\right|$ for all $\operatorname{Re}(s) \geqslant \sigma^{*}$. But then $f(s) \neq 0$ for $\operatorname{Re}(s) \geqslant \sigma^{*}$ in contradiction to our assumption.
b) We repeat the proof from above for $a_{1}=1$. Hence there is a $\sigma_{0}>\sigma_{a}$ such that $\sum_{n=2}^{\infty} \frac{\left|a_{n}\right|}{n^{\sigma}}<\frac{1}{2}$ holds for all $\operatorname{Re}(s)=\sigma>\sigma_{0}$. Thus the logarithm exists and converges against $\log (1)=0$. Furthermore note that $\left(\sum_{n=1}^{\infty} \frac{a_{n}}{n^{s}}\right)^{k}$ converges absolutely for $\operatorname{Re} s>\sigma_{a}(f)$ - the convolution of Dirichlet series. Hence we may interchange the limit in

$$
\log (f(s))=\sum_{k \geqslant 1}^{\infty} \frac{(-1)^{k}}{k}\left(\sum_{n=1}^{\infty} \frac{a_{n}}{n^{s}}\right)^{k}
$$

and get another Dirichlet series.
In the special of a multiplicate arithmetic function defining the Dirichlet series, we can use $\sum_{n=1}^{\infty} \frac{a_{n}}{n^{s}}=\prod_{p} \frac{1}{1-a_{p} p^{-s}}$ and

$$
\begin{aligned}
\log (f(s)) & =\log \left(\prod_{p} \frac{1}{1-a_{p} p^{-s}}\right)=\sum_{p} \log \left(\frac{1}{1-a_{p} p^{-s}}\right) \\
& =\sum_{p}\left(\sum_{k=1}^{\infty} \frac{a_{p}^{k}}{k p^{k s}}\right)=\sum_{k=1}^{\infty}\left(\sum_{p} \frac{a_{p}^{k}}{k p^{k s}}\right)
\end{aligned}
$$

where we interchanged the summation of the absolutely convergent series. Finally note, that $p^{k}=q^{m} \Rightarrow p=q, k=m$ for arbitrary prime numbers p, q. Hence this is a Dirichlet series.

Problem 15

a) By Abel Summation for $A(x)=O\left(x^{\alpha}\right)$

$$
\sum_{n \leqslant x} \frac{a_{n}}{n^{\alpha+\varepsilon}}=\frac{A(x)}{x^{\alpha+\varepsilon}}+\alpha \int_{1}^{x} \frac{A(u)}{u^{\alpha+\varepsilon+1}} \mathrm{~d} u
$$

Thus $\sum_{n=1}^{\infty} \frac{a_{n}}{n^{\alpha+\varepsilon}}$ exists for all $\varepsilon>0$. Hence $\inf \left\{\alpha \in \mathbb{R}: A(x)=O\left(x^{\alpha}\right)\right\} \geqslant \sigma_{c}(f)$. On the other hand if $\sum_{n=1}^{\infty} \frac{a_{n}}{n^{\alpha}}$ exists, than $\left|\sum_{n \leqslant x} \frac{a_{n}}{n^{\alpha}}\right|<c$ for some c.

$$
\begin{aligned}
& A(x)=\sum_{n \leqslant x} \frac{a_{n} n^{\alpha}}{n^{\alpha}}=x^{\alpha} \sum_{n \leqslant x} \frac{a_{n}}{n^{\alpha}}-\alpha \int_{1}^{x} u^{\alpha-1} \sum_{n \leqslant u} \frac{a_{n}}{n^{\alpha}} \mathrm{d} u \\
&|A(x)| \leqslant x^{\alpha} \cdot c+\alpha \int_{1}^{x} u^{\alpha-1} \cdot c \mathrm{~d} u=O\left(x^{\alpha}\right)
\end{aligned}
$$

b) By part a) it will be enough to define a sequence with $\alpha=\inf \left\{\beta \in \mathbb{R}: A(x)=O\left(x^{\beta}\right)\right\}$. Choose the a_{k} rekursively by the following rule: $a_{k}=1$ if $A(k-1)<k^{\alpha}$ and $a_{k}=-1$ if $A(k-1) \geqslant k^{\alpha}$. Then we even have $\lim _{x \rightarrow \infty} \frac{A(x)}{x^{\alpha}}=1$ and $\frac{A(x)}{x^{\alpha-\varepsilon}}$ unbounded. Obviously $\sigma_{a}(f)=1$.

Problem 16

a) We have

$$
\sum_{k \geqslant 1} \frac{\mu(k)}{k} \sum_{m \geqslant 1} \frac{1}{m} \pi\left(x^{1 / k m}\right)=\sum_{s=1}^{\infty} \frac{\pi\left(x^{1 / s}\right)}{s} \underbrace{\sum_{k \mid s} \mu(k)}_{\delta_{1 s}}=\sum_{s=1}^{\infty} \frac{\pi\left(x^{1 / s}\right)}{s} \delta_{1 s}=\pi(x),
$$

where we used that $\sum_{k \mid s} \mu(k)=\delta_{1 s}: s=1$ is obvious and for $s=\prod_{i=1}^{r} p_{i}^{e_{i}} \geqslant 2$ and $s^{\prime}=\prod_{i=1}^{r} p_{i}$ (pairwise disjoint factors):

$$
\sum_{k \mid s} \mu(k)=\sum_{k \mid s^{\prime}} \mu(k)=\sum_{\alpha \in\{0,1\}^{r}}(-1)^{\sum_{i=1}^{r} \alpha_{i}}=0 .
$$

b) We use $\log \zeta(s)=\sum_{n=1}^{\infty} \frac{\Lambda_{1}(n)}{n^{s}}$ with $\Lambda_{1}(n)=\left\{\begin{array}{ll}\frac{1}{m}, & \text { if } n=p^{m}, p \text { prime } \\ 0, & \text { else. }\end{array}\right.$. We first prove, that $\pi_{1}(x)=\sum_{n \leqslant x} \Lambda_{1}(x)$ by induction: It will be enough to check $x \in \mathbb{N}$. The case $x=1$ is clear. Now for $x \rightarrow x+1$ note that we have two cases:

$$
x=p^{m} \Rightarrow \pi_{1}(x+1)-\pi_{1}(x)=\frac{1}{m}=\Lambda_{1}(x+1)
$$

Note that in this case $\left\lfloor(x+1)^{1 / k}\right\rfloor-\left\lfloor x^{1 / k}\right\rfloor \neq 0$ if $k \mid m$ but $p^{m / k}$ is prime only for $k=m$. Furthermore

$$
x \neq p^{m} \Rightarrow \pi_{1}(x+1)-\pi_{1}(x)=0=\Lambda_{1}(x+1)
$$

In this case $\left\lfloor(x+1)^{1 / k}\right\rfloor-\left\lfloor x^{1 / k}\right\rfloor \neq 0$ implies $x+1=r^{k}$ for a natural number r, that is not a prime power.
We use Abel's Summation Theorem for $\operatorname{Re} s \geqslant 1$

$$
\begin{aligned}
\sum_{n \leqslant x} \frac{\Lambda_{1}(n)}{n^{s}} & =\frac{\sum_{n \leqslant x} \Lambda_{1}(n)}{x^{s}}+s \int_{1}^{x} \frac{\sum_{n \leqslant u} \Lambda_{1}(n)}{u^{s+1}} \mathrm{~d} u \\
& =\frac{\pi_{1}(x)}{x^{s}}+s \int_{1}^{x} \frac{\pi_{1}(u)}{u^{s+1}} \mathrm{~d} u
\end{aligned}
$$

In the limit $x \rightarrow \infty$ the first summand vanished, since $\pi_{1}(u)=\pi(x)+\frac{1}{2} \pi(\sqrt{x})+\ldots=$ $O(x \log (x))$ for $\pi(x)<x$.
Note that $\pi\left(x^{1 / k}\right)=0$ for $x^{1 / k}<2 \Leftrightarrow k>\frac{\log (x)}{\log (2)}$. Hence we immediately get

$$
\sum_{k=1}^{\lfloor\log (x) / \log (2)\rfloor} \frac{1}{k} \pi\left(x^{1 / k}\right) \leqslant \sum_{k=1}^{\lfloor\log (x) / \log (2)\rfloor} \frac{x^{1 / k}}{k} \leqslant \frac{\log (x) x}{\log (2)}=O\left(x^{1+\varepsilon}\right)
$$

for every $\varepsilon>0$. Finally we receive $\log \zeta(s)=s \int_{1}^{\infty} \frac{\pi_{1}(u)}{u^{s+1}} \mathrm{~d} u$ for $\operatorname{Re}(s)>1$.
Remark. Moreover observe that for $x \geqslant 2^{m}$

$$
\sum_{k=1}^{\lfloor\log (x) / \log (2)\rfloor} \frac{x^{\frac{1}{k}-1}}{k}-\sum_{k=1}^{\lfloor\log (2 x) / \log (2)\rfloor} \frac{(2 x)^{\frac{1}{k}-1}}{k} \geqslant \frac{1}{2 x^{1 / 2}}-\frac{1}{2(2 x)^{1 / 2}}-\frac{(2 x)^{-\lfloor\log (x) / \log (2)\rfloor}\left\lfloor\left\lfloor\left\lfloor\left\lfloor\left\lfloor\frac{\log (x)}{\log (2)}\right\rfloor\right.\right.\right.\right.}{1(2)+1}
$$

$$
\geqslant \frac{1}{2 x^{1 / 2}}-\frac{1}{2(2 x)^{1 / 2}}-\frac{1}{(1+m)(2 x)^{1 / 2}}>0
$$

for m big enough. Hence $\sum_{k=1}^{\lfloor\log (x) / \log (2\rfloor\rfloor} \frac{x^{\frac{1}{k}-1}}{k}$ is uniformely bounded in x and therefore $\pi_{1}(x)=O(x)$. Analogously we can show that $\sum_{k=2}^{\lfloor\log (x) / \log (2)\rfloor} \frac{x^{\frac{1}{k}}}{k}=O(\sqrt{x})$ and $\pi_{1}(x)=$ $\pi(x)+O(\sqrt{x})$.

