Riemann Surfaces Solution

Problem 32

a) Every element in $Y\left(t_{1}, t_{2}\right)$ can be written as $z=x+i y$ with $\left.x \in \mathbb{R}, y \in\right] t_{1}, t_{2}[$. Then $\Phi(z)=e^{2 \pi i z}=e^{-2 \pi y} e^{2 \pi i x}$ and $e^{-2 \pi t_{2}}<|\Phi(z)|=e^{-2 \pi y}<e^{-2 \pi t_{1}}$ by monotony of the real exponential function. Hence $\Phi(z) \in A\left(e^{-2 \pi t_{2}}, e^{-2 \pi t_{1}}\right)$. On the other hand every element in $A\left(e^{-2 \pi t_{2}}, e^{-2 \pi t_{1}}\right)$ can be written as $a=r e^{2 \pi i x}$ for $\left.r \in\right]-e^{-2 \pi t_{2}},-e^{-2 \pi t_{1}}[, x \in \mathbb{R}$. By surjectivity of the exponential function we find a $y \in\left[t_{1}, t_{2}\right]$ such that $e^{2 \pi t_{1}}<r^{-1}=$ $e^{2 \pi y}<e^{2 \pi t_{2}}$. By construction we get $\Phi(x+i y)=a$.
For every $u \in U\left(t_{1}, t_{2}\right)$ choose a $w \in Y\left(t_{1}, t_{2}\right)$ such that $u=p(w)$ and define $\varphi(u)=$ $\Phi(w)$. Observe that for $w, w^{\prime} \in Y\left(t_{1}, t_{2}\right)$ with $p(w)=p\left(w^{\prime}\right)=u$ we get $w-w^{\prime} \in \mathbb{Z}$: If $w-w^{\prime}=a+b \tau$, then $\operatorname{Im}(w)-\operatorname{Im}\left(w^{\prime}\right)=b \operatorname{Im}(\tau) \Rightarrow \operatorname{Im}(\tau) \geqslant t_{2}-t_{1}>\operatorname{Im}(w)-\operatorname{Im}\left(w^{\prime}\right)=$ $b \operatorname{Im}(\tau) \Rightarrow b=0$. But then $e^{2 \pi i w}=e^{2 \pi i w^{\prime}}$. Thus φ is well-defined. It is surjective since p and Φ are surjective. Injectivity follows by construction, i.e. $\varphi(u)=\varphi\left(u^{\prime}\right) \Rightarrow \Phi(w)=$ $\Phi\left(w^{\prime}\right) \Rightarrow \operatorname{Im}(w)=\operatorname{Im}\left(w^{\prime}\right), \operatorname{Re}(w)-\operatorname{Re}\left(w^{\prime}\right) \in \mathbb{Z} \Rightarrow u=p(w)=p\left(w^{\prime}\right)=u^{\prime}$. Since p is locally biholomorphic, φ is everywhere locally holomorphic and therefore holomorphic everywhere.
b) U_{1} and U_{2} identify via Φ with annuli and we get by Problem 31 that $H^{1}\left(U_{1}, \mathcal{O}\right)=$ $H^{1}\left(U_{2}, \mathcal{O}\right)=0$. Hence $\mathfrak{U}=\left(U_{1}, U_{2}\right)$ is a Leray cover. We show that $U_{1} \cap U_{2}$ has two connected components $W_{0}=p(Y(0, T / 2)), W_{1}=p(Y(-T / 2,0))=p(Y(T / 2, T)) \|^{1} W_{0}$ and W_{1} are open as image of open sets under the holomorphic non-constant (hence open) map p. W_{0} and W_{1} are disjoint, since $w \in W_{0} \cap W_{1}$ implies there are $z \in Y(0, T / 2), z^{\prime} \in$ $Y(T / 2, T)$ with $p(z)=p\left(z^{\prime}\right) \Rightarrow z-z^{\prime} \in \Lambda \Rightarrow \operatorname{Im}(z)-\operatorname{Im}\left(z^{\prime}\right)=b \cdot T$. But there can be no such b, since $\operatorname{Im}(z)-\operatorname{Im}\left(z^{\prime}\right)<T$ and $\operatorname{Im}(z) \neq \operatorname{Im}\left(z^{\prime}\right)$. We still have to show that $U_{1} \cap U_{2}=W_{0} \dot{\cup} W_{1}$. By construction we already know that $U_{1} \cap U_{2} \supset W_{0} \dot{\cup} W_{1}$. If $u \in U_{1} \cap U_{2}$, then there are $z \in Y(0, T), z^{\prime} \in Y(-T / 2, T / 2)$ with $p(z)=p\left(z^{\prime}\right)$. If $z \in Y(0, T / 2)$ we are done. If $z \notin Y(0, T / 2)$ then $\operatorname{Im}(z) \geqslant T / 2$. But $\operatorname{Im}(z)=T / 2$ implies $\operatorname{Im}\left(z^{\prime}\right)=T / 2+T \cdot \mathbb{Z}$ in contradiction to $z^{\prime} \in Y(-T / 2, T / 2)$. Hence $\operatorname{Im}(z)>T / 2$ and $z \in Y(T / 2, T) \Rightarrow p(z) \in W_{1}$.
c) By Riemann-Roch the result follows easily, since $H^{0}(X, \mathcal{O}) \simeq \mathbb{C}$ on a compact Riemann surfaces we get for a genus 1 surface and $D=0: \operatorname{dim} H^{0}\left(X, \mathcal{O}_{D}\right)-\operatorname{dim} H^{1}\left(X, \mathcal{O}_{D}\right)=$ $1-g+\operatorname{deg}(D) \Rightarrow \operatorname{dim} H^{1}\left(X, \mathcal{O}_{D}\right)=1$.
Instead of using the Riemman-Roch theorem we can for example use the charts of part a). Consider $U_{1} \simeq A\left(e^{-2 \pi T}, 1\right), U_{2} \simeq A\left(e^{-\pi T}, e^{\pi T}\right), W_{0} \simeq A\left(e^{-\pi T}, 1\right)$ and $W_{1} \simeq A\left(1, e^{\pi T}\right)$. Then a holomorphic function f on $W_{0} \dot{\cup} W_{1}$ looks like $\left.f\right|_{W_{0}}=\sum_{n=-\infty}^{\infty} c_{n} z^{n},\left.f\right|_{W_{1}}=$ $\sum_{n=-\infty}^{\infty} d_{n} z^{n}$. A holomorphic function on U_{1} may be written as $g=\sum_{n=-\infty}^{\infty} a_{n} z^{n}$. For a

[^0]holomorphic function h on U_{2} we get $\left.h\right|_{W_{0}}=\sum_{n=-\infty}^{\infty} b_{n} z^{n}$. Since $\Phi(z-\tau)=\Phi(z) \cdot e^{-2 \pi i \tau}$ we must have $\left.h\right|_{W_{1}}=\sum_{n=-\infty}^{\infty} b_{n}\left(e^{-2 \pi i \tau} z\right)^{n}=\sum_{n=-\infty}^{\infty} b_{n} e^{-2 n \pi i \tau} z^{n} .2$ This Hence
$$
\left.\delta(g, h)\right|_{W_{0}}=g-h=\sum_{n=-\infty}^{\infty}\left(a_{n}-b_{n}\right) z^{n},\left.\delta(g, h)\right|_{W_{1}}=g-h=\sum_{n=-\infty}^{\infty}\left(a_{n}-b_{n} e^{-2 n \pi i \tau}\right) z^{n}
$$

If $c_{0}=d_{0}$, then $a_{n}-b_{n}=c_{n}, a_{n}-b_{n} e^{-2 n \pi i \tau}=d_{n}$ has a solution ${ }^{3}$

$$
b_{n}=\left(1-e^{-2 n \pi i \tau}\right)^{-1}\left(d_{n}-c_{n}\right), a_{n}=c_{n}-b_{n} \text { for } n \geqslant 1, a_{0}+b_{0}=c_{0} .
$$

If $c_{0} \neq d_{0}$ there is no solution. Hence $\delta\left(C^{0}(\mathfrak{U}, \mathcal{O})\right)=\left\{\left(f_{1}, f_{2}\right) \in \mathcal{O}\left(W_{0}\right) \times \mathcal{O}\left(W_{1}\right)\right.$: f_{1}, f_{2} have the same zero coefficient in their Laurent expansion $\}$. We get $H^{1}(X, \mathcal{O}) \simeq \mathbb{C}$ where every class is represented by a constant $d_{0}-c_{0}$ and f_{0} with $\left.f_{0}\right|_{W_{0}}=0,\left.f_{0}\right|_{W_{1}}=1$ represents a basis.

[^1]
[^0]: ${ }^{1} f: Y(-T / 2,0) \rightarrow Y(-T / 2,0), z \mapsto z+\tau$ is a bijection and $p \circ f=p$.

[^1]: ${ }^{2} z \mapsto e^{-2 \pi i \tau} z$ is the transition function from one chart to the other.
 ${ }^{3}$ Note that $n \tau \in \mathbb{Z} \Leftrightarrow n=0$.

