MATHEMATISCHES INSTITUT DER UNIVERSITÄT MÜNCHEN Pascal Reisert

Riemann Surfaces Solution

Problem 18

b) There is no two-sheeted cover of E_{ϱ} onto itself: Let ω_1, ω_2 be linear independent of smallest absolute value in $\Lambda = \mathbb{Z}\omega_1 + \mathbb{Z}\omega_2$ and $|\omega_1| \leq |\omega_2|$.

By problem 17, there should be a constant α with $\alpha \Lambda \subset \Lambda$ and suitable index, i.e. $[\omega_1] = [\omega_2] \neq [0] = [\omega_1 + \omega_2] = \mod \alpha \Lambda$.¹ The two conditions imply $\alpha \omega_1 = k_{11}\omega_1 + k_{12}\omega_2, \alpha \omega_2 = k_{21}\omega_1 + k_{22}\omega_2$ and $\omega_1 - \omega_2 = +k_{-,1}\alpha\omega_1 + k_{-,2}\alpha\omega_2$ and $\omega_1 + \omega_2 = \alpha(k_{+,1}\omega_1 + k_{+,2}\omega_2)$ for some integers $k_{11}, k_{12}, k_{21}, k_{22}, k_{-,1}, k_{-,2}, k_{+,1}, k_{+,2}$. We claim that $\alpha \omega_1 = \pm \omega_2$ or $\alpha \omega_1 = \pm (\omega_1 \pm \omega_2)$. Note that $\alpha \omega_1 = k\omega_1 \Rightarrow \alpha = k \in \mathbb{Z}$ and the contradiction $[0] \neq [\omega_1] \neq [\omega_2] \neq [0] \mod k\Lambda$ if |k| > 1 and $\alpha\Lambda = \Lambda$ for |k| = 1 follows.² Now assume $\alpha \omega_1 \neq \pm \omega_2, \mathbb{Z}\omega_1$, then $|\alpha \omega_1|$ at least as large as the smallest absultute value in $\Lambda \setminus \{\mathbb{Z}\omega_1, \pm \omega_2\}$, i.e. is at least $|\omega_1 \pm \omega_2|$.³ Then

$$|\omega_1 - \omega_2| = |k_{-,1}\alpha\omega_1 + k_{-,2}\alpha\omega_2| \ge |\alpha\omega_1|$$

and

$$|\omega_1 + \omega_2| = |k_{+,1}\alpha\omega_1 + k_{+,2}\alpha\omega_2| \ge |\alpha\omega_1|$$

implies $\alpha \omega_1 = \pm (\omega_1 \pm \omega_2)$. In the case $\omega_1 = 1, \omega_2 = \varrho = \exp(2\pi i/3)$ we have $|\omega_1| = |\omega_2| = |\omega_2 - \omega_1| = |\exp(\pi i/3)| = 1$ and we get $\alpha = \exp(ki\pi/3), k \in \mathbb{Z}$ and hence $\alpha \Lambda = \Lambda$.

Alternative 1: The following proof was given by Ludwig Fürst. Note that $1 \equiv \rho \equiv 1 + \rho \mod \alpha \Lambda$ implies $1, \rho \in \alpha \Lambda$ and hence $\alpha \Lambda = \Lambda$. Furthermore since $1 + \rho + \rho^2 = 0$ we know that for all $\omega \in \Lambda, \omega \alpha \Lambda \subset \alpha \Lambda$. Hence if

- (i) $1 \in \alpha \Lambda$ then $\varrho \cdot 1 = \varrho \in \alpha \Lambda \Rightarrow \alpha \Lambda = \Lambda$.
- (ii) $\rho \in \alpha \Lambda$ then $(1 + \rho) \cdot \rho = \rho^2 + \rho = -1 \Rightarrow \alpha \Lambda = \Lambda$.
- (iii) $1 + \varrho \in \alpha \Lambda$ then $\varrho \cdot (\varrho + 1) = \varrho^2 + \varrho = -1 \Rightarrow \alpha \Lambda = \Lambda$.

There can be no two-sheeted covering $E_{\rho} \to E_{\rho}$.

Alternative 2: A number theoretic proof by Alexander Trost.

 Λ_{ϱ} forms the ring of integers \mathcal{O}_{K} for the number field $K = \mathbb{Q}[\sqrt{-3}]$. We are looking for a α with $\alpha \Lambda_{\varrho} \subset \Lambda_{\varrho}$. Observe that $\alpha \Lambda_{\varrho}$ is a prinicipal ideal that contains $\alpha \cdot 1$. We require $2 = [\Lambda_{\varrho} : \alpha \Lambda_{\varrho}] = N(\alpha \Lambda_{\varrho}) = N_{K|\mathbb{Q}}(\alpha) = \alpha \cdot \overline{\alpha}.^{4}$ But

$$2 = (k + l\varrho)(k + l\overline{\varrho}) = k^2 + l^2 + (\varrho + \overline{\varrho})kl = k^2 + l^2 - kl = (k - l)^2 + kl$$

is impossible. More precisely if kl < 0 then $2 = k^2 + l^2 - kl$ has no integer solution; if $kl \ge 0$, then $2 = (k-l)^2 + kl$ has no integer solution. Hence we will find no suitable α .

¹If $[\omega_1] = [0] \neq [\omega_2]$ substitute $\omega_1 \mapsto \omega_1 + \omega_2$.

²The coefficient of ω_2 in $\omega_1 = \omega_2 + k'' k \omega_1 + l'' k \omega_2$ is 1 mod k.

³Write $k\omega_1 + l\omega_2$ as $(k+l)(w_1 + w_2)/2 - (k-l)(w_1 - w_2)/2$, w.l.o.g. $|k+l| \ge |k-l|$ and estimate for $0 \ne k \ne l \ne 0$: $|k\omega_1 + l\omega_2| \ge |(k+l)/2||w_1 + w_2| - |(k-l)/2||w_1 - w_2| \ge |(k+l)/2||w_1 + w_2| - |(k-l)/2||w_1 - w_2| \ge \min\{k, l\}|w_1 - w_2|$ for w.l.o.g. $|w_1 + w_2| \ge |w_1 - w_2|$.

⁴Recall that the norm is just $(k + l\varrho) \cdot (k + l\overline{\varrho})$.

Problem 20

a) $f = w + z = \sqrt[3]{1 - z^3} + z$ has no pole outside of ∞ . We get no zero since $w = -z \Rightarrow w^3 + z^3 = 0 \neq 1$. Rewrite $z(\sqrt[3]{z^{-3} - 1} + 1)$. $\sqrt[3]{z^{-3} - 1}$ has three branches around ∞ . We develop around $z = \infty$ resp. $u = 0, u = z^{-1}$

$$\sqrt[3]{u^3 - 1} = \exp(2\pi i k/3)(-1 + u^3/3 + \mathcal{O}(u^6)).$$

For k = 0 we get $z(\sqrt[3]{z^{-3}-1}+1) = z^{-2}/3 + \mathcal{O}(z^{-5})$. In the local coordinate $u = z^{-1}$ we have $u^2(1/3 + \mathcal{O}(u^3))$ and a zero of order 2. For k = 1, 2 we have $z(\sqrt[3]{z^{-3}-1}+1) = z(-1 + \exp(2\pi i k/3) + z^{-3} \exp(2\pi i k/3)/3 + \mathcal{O}(z^{-6}))$ and hence two single poles. The two-sheeted cover has three branch points apart from 0: $w + z = c \in \mathbb{C}$, $w = c - z \Rightarrow (c - z)^3 + z^3 = 1 \Rightarrow c^3 - 1 - 3c^2z + 3cz^2 = 0$. We get one-solution z = -c/2 for $9c^4 - 12c^4 + 12c = 3c(4 - c^3) = 0$ or $c = 0, \exp(2\pi i k/3)\sqrt[3]{4}$. Hence the branch points are (-c/2, 3c/2).

b) Observer that $q = 1 + \exp(2\pi i n/3) + \exp(4\pi i n/3) = 0$. Locally $f_n = \exp(2\pi i n/3)r(z) \cdot z + z, r(z) = \sqrt[3]{z^{-3} - 1}, n = 1, 2, 3$. Hence $s_0(f_1, f_2, f_3) = 1, s_1(f_1, f_2, f_3) = f_1 + f_2 + f_3 = 3z$,

$$s_2(f_1, f_2, f_3) = f_1 f_2 + f_1 f_3 + f_2 f_3 = z^2 (3 + 2r(z)(q) + r(z)^2 q) = 3z^2$$

and

$$s_3(f_1, f_2, f_3) = f_1 f_2 f_3 = z^3 (1 + r(z)q + r(z)^2 q + r(z)^3) = z^3 (1 + z^{-3} - 1) = 1.$$