Riemann Surfaces
 Solution

Problem 18

b) There is no two-sheeted cover of E_{ϱ} onto itself: Let ω_{1}, ω_{2} be linear independent of smallest absolute value in $\Lambda=\mathbb{Z} \omega_{1}+\mathbb{Z} \omega_{2}$ and $\left|\omega_{1}\right| \leqslant\left|\omega_{2}\right|$.
By problem 17 , there should be a constant α with $\alpha \Lambda \subset \Lambda$ and suitable index, i.e. [ω_{1}] $=$ $\left[\omega_{2}\right] \neq[0]=\left[\omega_{1}+\omega_{2}\right]=\bmod \alpha \Lambda .1$ The two conditions imply $\alpha \omega_{1}=k_{11} \omega_{1}+k_{12} \omega_{2}, \alpha \omega_{2}=$ $k_{21} \omega_{1}+k_{22} \omega_{2}$ and $\omega_{1}-\omega_{2}=+k_{-, 1} \alpha \omega_{1}+k_{-, 2} \alpha \omega_{2}$ and $\omega_{1}+\omega_{2}=\alpha\left(k_{+, 1} \omega_{1}+k_{+, 2} \omega_{2}\right)$ for some integers $k_{11}, k_{12}, k_{21}, k_{22}, k_{-, 1}, k_{-, 2}, k_{+, 1}, k_{+, 2}$. We claim that $\alpha \omega_{1}= \pm \omega_{2}$ or $\alpha \omega_{1}=$ $\pm\left(\omega_{1} \pm \omega_{2}\right)$. Note that $\alpha \omega_{1}=k \omega_{1} \Rightarrow \alpha=k \in \mathbb{Z}$ and the contradiction $[0] \neq\left[\omega_{1}\right] \neq\left[\omega_{2}\right] \neq$ [0] $\bmod k \Lambda$ if $|k|>1$ and $\alpha \Lambda=\Lambda$ for $|k|=1$ follows. ${ }^{2}$ Now assume $\alpha \omega_{1} \neq \pm \omega_{2}, \mathbb{Z} \omega_{1}$, then $\left|\alpha \omega_{1}\right|$ at least as large as the smallest absultute value in $\Lambda \backslash\left\{\mathbb{Z} \omega_{1}, \pm \omega_{2}\right\}$, i.e. is at least $\left.\left|\omega_{1} \pm \omega_{2}\right|\right|^{3}$ Then

$$
\left|\omega_{1}-\omega_{2}\right|=\left|k_{-, 1} \alpha \omega_{1}+k_{-, 2} \alpha \omega_{2}\right| \geqslant\left|\alpha \omega_{1}\right|
$$

and

$$
\left|\omega_{1}+\omega_{2}\right|=\left|k_{+, 1} \alpha \omega_{1}+k_{+, 2} \alpha \omega_{2}\right| \geqslant\left|\alpha \omega_{1}\right|
$$

implies $\alpha \omega_{1}= \pm\left(\omega_{1} \pm \omega_{2}\right)$. In the case $\omega_{1}=1, \omega_{2}=\varrho=\exp (2 \pi i / 3)$ we have $\left|\omega_{1}\right|=\left|\omega_{2}\right|=$ $\left|\omega_{2}-\omega_{1}\right|=|\exp (\pi i / 3)|=1$ and we get $\alpha=\exp (k i \pi / 3), k \in \mathbb{Z}$ and hence $\alpha \Lambda=\Lambda$.

Alternative 1: The following proof was given by Ludwig Fürst. Note that $1 \equiv \varrho \equiv$ $1+\varrho \bmod \alpha \Lambda$ implies $1, \varrho \in \alpha \Lambda$ and hence $\alpha \Lambda=\Lambda$. Furthermore since $1+\varrho+\varrho^{2}=0$ we know that for all $\omega \in \Lambda, \omega \alpha \Lambda \subset \alpha \Lambda$. Hence if
(i) $1 \in \alpha \Lambda$ then $\varrho \cdot 1=\varrho \in \alpha \Lambda \Rightarrow \alpha \Lambda=\Lambda$.
(ii) $\varrho \in \alpha \Lambda$ then $(1+\varrho) \cdot \varrho=\varrho^{2}+\varrho=-1 \Rightarrow \alpha \Lambda=\Lambda$.
(iii) $1+\varrho \in \alpha \Lambda$ then $\varrho \cdot(\varrho+1)=\varrho^{2}+\varrho=-1 \Rightarrow \alpha \Lambda=\Lambda$.

There can be no two-sheeted covering $E_{\varrho} \rightarrow E_{\varrho}$.
Alternative 2: A number theoretic proof by Alexander Trost.
Λ_{ϱ} forms the ring of integers \mathcal{O}_{K} for the number field $K=\mathbb{Q}[\sqrt{-3}]$. We are looking for a α with $\alpha \Lambda_{\varrho} \subset \Lambda_{\varrho}$. Observe that $\alpha \Lambda_{\varrho}$ is a prinicpal ideal that contains $\alpha \cdot 1$. We require $\left.2=\left[\Lambda_{\varrho}: \alpha \Lambda_{\varrho}\right]=N\left(\alpha \Lambda_{\varrho}\right)=N_{K \mid \mathbb{Q}}(\alpha)=\alpha \cdot \bar{\alpha}\right]^{4}$ But

$$
2=(k+l \varrho)(k+l \bar{\varrho})=k^{2}+l^{2}+(\varrho+\bar{\varrho}) k l=k^{2}+l^{2}-k l=(k-l)^{2}+k l
$$

is impossible. More precisely if $k l<0$ then $2=k^{2}+l^{2}-k l$ has no integer solution; if $k l \geqslant 0$, then $2=(k-l)^{2}+k l$ has no integer solution. Hence we will find no suitable α.

[^0]
Problem 20

a) $f=w+z=\sqrt[3]{1-z^{3}}+z$ has no pole outside of ∞. We get no zero since $w=-z \Rightarrow$ $w^{3}+z^{3}=0 \neq 1$. Rewrite $z\left(\sqrt[3]{z^{-3}-1}+1\right) . \sqrt[3]{z^{-3}-1}$ has three branches around ∞. We develop around $z=\infty$ resp. $u=0, u=z^{-1}$

$$
\sqrt[3]{u^{3}-1}=\exp (2 \pi i k / 3)\left(-1+u^{3} / 3+\mathcal{O}\left(u^{6}\right)\right)
$$

For $k=0$ we get $z\left(\sqrt[3]{z^{-3}-1}+1\right)=z^{-2} / 3+\mathcal{O}\left(z^{-5}\right)$. In the local coordinate $u=z^{-1}$ we have $u^{2}\left(1 / 3+\mathcal{O}\left(u^{3}\right)\right)$ and a zero of order 2 . For $k=1$, 2 we have $z\left(\sqrt[3]{z^{-3}-1}+1\right)=$ $z\left(-1+\exp (2 \pi i k / 3)+z^{-3} \exp (2 \pi i k / 3) / 3+\mathcal{O}\left(z^{-6}\right)\right)$ and hence two single poles.
The two-sheeted cover has three branch points apart from 0 : $w+z=c \in \mathbb{C}, w=$ $c-z \Rightarrow(c-z)^{3}+z^{3}=1 \Rightarrow c^{3}-1-3 c^{2} z+3 c z^{2}=0$. We get one-solution $z=-c / 2$ for $9 c^{4}-12 c^{4}+12 c=3 c\left(4-c^{3}\right)=0$ or $c=0, \exp (2 \pi i k / 3) \sqrt[3]{4}$. Hence the branch points are ($-c / 2,3 c / 2$).
b) Observer that $q=1+\exp (2 \pi i n / 3)+\exp (4 \pi i n / 3)=0$. Locally $f_{n}=\exp (2 \pi i n / 3) r(z) \cdot z+$ $z, r(z)=\sqrt[3]{z^{-3}-1}, n=1,2,3$. Hence $s_{0}\left(f_{1}, f_{2}, f_{3}\right)=1, s_{1}\left(f_{1}, f_{2}, f_{3}\right)=f_{1}+f_{2}+f_{3}=3 z$,

$$
s_{2}\left(f_{1}, f_{2}, f_{3}\right)=f_{1} f_{2}+f_{1} f_{3}+f_{2} f_{3}=z^{2}\left(3+2 r(z)(q)+r(z)^{2} q\right)=3 z^{2}
$$

and

$$
s_{3}\left(f_{1}, f_{2}, f_{3}\right)=f_{1} f_{2} f_{3}=z^{3}\left(1+r(z) q+r(z)^{2} q+r(z)^{3}\right)=z^{3}\left(1+z^{-3}-1\right)=1 .
$$

[^0]: ${ }^{1}$ If $\left[\omega_{1}\right]=[0] \neq\left[\omega_{2}\right]$ substitute $\omega_{1} \mapsto \omega_{1}+\omega_{2}$.
 ${ }^{2}$ The coefficient of ω_{2} in $\omega_{1}=\omega_{2}+k^{\prime \prime} k \omega_{1}+l^{\prime \prime} k \omega_{2}$ is $1 \bmod k$.
 ${ }^{3}$ Write $k \omega_{1}+l \omega_{2}$ as $(k+l)\left(w_{1}+w_{2}\right) / 2-(k-l)\left(w_{1}-w_{2}\right) / 2$, w.l.o.g. $|k+l| \geqslant|k-l|$ and estimate for $0 \neq k \neq l \neq 0$: $\left|k \omega_{1}+l \omega_{2}\right| \geqslant|(k+l) / 2|\left|w_{1}+w_{2}\right|-|(k-l) / 2|\left|w_{1}-w_{2}\right| \geqslant|(k+l) / 2|\left|w_{1}+w_{2}\right|-|(k-l) / 2|\left|w_{1}-w_{2}\right| \geqslant \min \{k, l\}\left|w_{1}-w_{2}\right|$ for w.l.o.g. $\left|w_{1}+w_{2}\right| \geqslant\left|w_{1}-w_{2}\right|$.
 ${ }^{4}$ Recall that the norm is just $(k+l \varrho) \cdot(k+l \bar{\varrho})$.

