Riemann Surfaces Solution

Problem 15

a) Let z be a root, i.e. $F(z) = z^n + a_1 z^{n-1} + \ldots + a_n = 0$. We get $|z^n| = |\sum_{i=0}^{n-1} a_{n-i} z^i| \leq \sum_{i=0}^{n-1} |a_{n-i}|| |z|^i$ and $1 \leq \sum_{i=0}^{n-1} |a_{n-i}|| |z|^{i-n}$. Now if $|z| > 2 \max\{|a_k|^{1/k} : 1 \leq k \leq n\}$ then

$$\sum_{i=0}^{n-1} |a_{n-i}| |z|^{i-n} \leqslant \sum_{i=0}^{n-1} 2^{i-n} \cdot |a_{n-i}| |a_{n-i}|^{(i-n)/(n-i)} = \sum_{i=0}^{n-1} 2^{i-n} \cdot |a_{n-i}|^{1-1} = \sum_{i=1}^{n} 2^{-i} < 1.$$

b) Let $K \subset \mathbb{C}^n$ be compact. The map is obviously continuous and hence $\Phi^{-1}(K)$ closed. K is bounded, i.e. $\exists r$ such that $|z_i| < r$ for all $(z_i)_i \in K$. Let $x = (x_i)_i \in \Phi^{-1}(K)$, then $|\Phi(x_i)| < r$. But x_i is a zero of the polynomial $F(z) = \sum_{k=0}^n (-1)^k s_k z^{n-k}$ and hence bounded by part a) by $2 \max\{|s_k(x_i)|^{1/k} : 1 \leq k \leq n\} < \max\{2, 2r\}$. Thus $\Phi^{-1}(K)$ is bounded and therefore compact. Hence Φ is proper. The map is surjective: Take $a = (a_k)_k \in \mathbb{C}^n$, $a_0 = 1$ and consider the polynomial $G(z) = \sum_{k=0}^n (-1)^k a_k z^{n-k}$. Then G(z) has n complex zeroes x_1, \ldots, x_n . Thus $\Phi((x_i)_i) = (a_k)_k$.

Problem 16

Let U be open and $\pi|_{V_i}: V_i \to U$ a local homeomorphism with inverse τ_i . Then $f_i = \tau_i^*(f)$ and $\operatorname{tr}(f) = \sum_i f_i$. We show inductively that all elementary symmetric functions are polynomials of $\operatorname{tr}(f), \operatorname{tr}(f^2)$, a.s.o. We claim that $s_k(f_1, \ldots, f_n) = k^{-1} \sum_{i=1}^k (-1)^{i+1} s_{k-i}(f_1, \ldots, f_n) \operatorname{tr}(f^i)$. The case k = 1 is obvious, the case two and three are:

$$s_2 = \frac{1}{2} \cdot (\operatorname{tr}(f)^2 - \operatorname{tr}(f^2)), \quad s_3 = \frac{1}{6} \cdot (\operatorname{tr}(f)^3 - 4 \cdot \operatorname{tr}(f)\operatorname{tr}(f^2) + 2 \cdot \operatorname{tr}(f^3))$$

We have to proof the identity $ks_k(f_1, \ldots, f_n) = \sum_{i=1}^k (-1)^{i+1}s_{k-i}(f_1, \ldots, f_n)\operatorname{tr}(f^i)$. Observe that every monomial $\prod_{i=0}^n f_i^{e_i}$ on the right hand side with one $r = e_j > 1$ occurs in exactly two summands -

$$(-1)^{r+1} \left(\prod_{i \neq j} f_i^{e_i}\right) \cdot f_j^r \text{ in } (-1)^{r+1} s_{k-r} \operatorname{tr}(f^r), \quad (-1)^r \left(f_j \prod_{i \neq j} f_i^{e_i}\right) \cdot f_j^{r-1} \text{ in } (-1)^r s_{k-r+1} \operatorname{tr}(f^{r-1})$$

with different sign. Hence it trops out. What is left, are those monomials with $e_j = 1$ for exactly k entries. These add up to ks_k . (For every ordered tupel (i_1, \ldots, i_k) and every i_j , $\prod_{l \neq j} f_{i_l} \in s_{k-1}$ times one factor f_{i_j} from tr(f).)