Riemann Surfaces Solution

Problem 45

Analogous to the discussion of problem 19 we see that X has exactly n branch points ($\left.e^{2 \pi i j / n}, 0\right), 0 \leqslant$ $j<n$ of order n. Hence the ramification index is $b=n(n-1)$. By Riemann-Hurwitz we get $g=\frac{n(n-1)}{2}+n(-1)+1=\frac{n^{2}-3 n+2}{2}=\frac{(n-1)(n-2)}{2}$.

Problem 46

We get four branch points $\left(a_{j}, 0\right), 1 \leqslant j \leqslant 4$. X has a branch point at ∞ : For $u=z^{-1}$ we get $w=\sqrt[3]{u^{-1}} u^{-1} \sqrt[3]{\prod_{j=1}^{4}\left(1-u a_{j}\right)}=\sqrt[3]{u^{-1}} \frac{h(u)}{u}$ for a holomorphic non-vanishing function h. Thus we get a branch point at ∞. Hence $b=5(3-1)=10$ and $g=10 / 2+3(-1)+1=3$. Furthermore note that $\operatorname{dim} H^{0}(X, \Omega)=\operatorname{dim} H^{1}(X, \mathcal{O})=\operatorname{dim} H^{0}(X, \mathcal{O})-1+g=g=3$. The differential forms are obviously not linearly independent, thus it is enough to show that they are holomorphic on X. The σ_{i} are holomorphic outside the branch points. Now choose a local coordinate u_{j} with $u_{j}^{3}=z-a_{j}$. Then

$$
\sigma_{1}=\frac{d z}{w}=\frac{3 u_{j}^{2} d u_{j}}{u_{j} h_{j}\left(u_{j}\right)}=\frac{3 u_{j} d u_{j}}{h_{1 j}\left(u_{j}\right)}, \quad \sigma_{2}=\frac{3 u_{j}^{2} d u_{j}}{u_{j}^{2} h_{j}^{2}\left(u_{j}\right)}=\frac{3 d u_{j}}{h_{1 j}\left(u_{j}\right)}, \quad \sigma_{3}=\frac{\left(u_{j}^{3}+a_{j}\right) d u_{j}}{h_{j}^{2}\left(u_{j}\right)}
$$

for a holomorphic non-vanishing function h_{j}. Finally we have to check holomorphicity at ∞. Take a coordinate u_{∞} with $u_{\infty}^{3}=z^{-1}$. We get

$$
\sigma_{1}=\frac{d z}{w}=\frac{-3 u_{\infty}^{-4} d u_{\infty}}{\sqrt[3]{u_{\infty}^{-3}} \frac{h\left(u_{\infty}^{3}\right)}{u_{\infty}}}=-\frac{3 d u_{\infty}}{h\left(u_{\infty}^{3}\right)}, \quad \sigma_{2}=-\frac{3 u_{\infty}^{4} d u_{\infty}}{h\left(u_{\infty}^{3}\right)}, \quad \sigma_{3}=-\frac{3 u_{\infty} d u_{\infty}}{h\left(u_{\infty}^{3}\right)} .
$$

Problem 47

a) The long exact sequence to the given short exact sequence is

$$
\mathcal{M}(X) \rightarrow \mathcal{Q}(X) \rightarrow H^{1}(X, \mathbb{C}) \rightarrow H^{1}(X, \mathcal{M})=0
$$

and we get $H^{1}(X, \mathbb{C}) \simeq \mathcal{Q}(X) / d \mathcal{M}(X)$.
b) By the theorem of deRham-Hodge we get $H^{1}(X, \mathbb{C}) \simeq \operatorname{Harm}^{1}(X)=\Omega(X) \oplus \bar{\Omega}(X)$ and $\operatorname{dim}\left(\operatorname{Harm}^{1}(X)\right)=2 g=2$. Since $d z \notin \mathbb{C} \cdot \wp_{\Lambda} d z$ we get a basis $\left(d z, \wp_{\Lambda} d z\right)$.

Problem 48

a) The divisor D has finite support on X and hence on U. On U we find a meromorphic function f_{D} with divisor $\left.D\right|_{U}$, e.g. $\prod_{x \in \operatorname{Supp}(D)}(z-x)^{D(x)}$. Then $\mathcal{O}_{D} \xrightarrow{\simeq} \mathcal{O}, g \mapsto g f_{D}$ is an isomorphism. Hence $H^{1}\left(U, \mathcal{O}_{D}\right) \simeq H^{1}(U, \mathcal{O})$. Construct a cover of $X \backslash\{a\}$ as follows: Take a punctured disc neighbourhood V_{0} around a. Let $V_{i}, i \in \mathbb{Z}_{+}$be small discs such that $a \notin \overline{V_{i} \cap V_{0}}$. As we have seen before $H^{1}\left(V_{i}, \mathcal{O}_{D}\right)=0$ for discs and $H^{1}\left(V_{0}, \mathcal{O}_{D}\right)=0$ for a ring area. Thus $\mathfrak{U}=\left(U_{i}\right)_{i \in \mathbb{N}}$ is a Leray cover of $X \backslash\{a\}$. Now take a cocycle $\left(f_{i j}\right) \in Z^{1}\left(\mathfrak{U}, \mathcal{O}_{D}\right)$. We add another chart V_{0}^{\prime} such that $a \in V_{0}^{\prime} \subset V_{0},\left.D\right|_{V_{0}^{\prime}}=D(a)$ and $V_{0}^{\prime} \cap V_{i}=\emptyset$ for $i>0$. We get a Leray covering \mathfrak{U}^{\prime} of X. Since there are no triple intersections with V_{0}^{\prime} we can extend $\left(f_{i j}\right)$ to a cocycle $\left(f_{i j}^{\prime}\right) \in Z^{1}\left(\mathfrak{U}^{\prime}, \mathcal{O}_{D}\right)$ by choosing $f_{0^{\prime} 0}$ aribitrary holomorphic on $V_{0}^{\prime} \backslash\{a\}$. But then $\left(f_{i j}^{\prime}\right) \in Z^{1}\left(\mathfrak{U}^{\prime}, \mathcal{O}_{D+k a}\right)$ for every $k \in \mathbb{Z}$. If k is large enough such that $\operatorname{deg}(D+k a)>2 g-2$, then $H^{1}\left(\mathfrak{U}^{\prime}, \mathcal{O}_{D+k a}\right)=0$. Thus $f_{i j}=f_{i}-f_{j}$ for $\left(f_{i}\right) \in C^{0}\left(\mathfrak{U}^{\prime}, \mathcal{O}_{D+k a}\right)$. The reduced chain $\left(f_{i}\right) \in C^{0}\left(\mathfrak{U}, \mathcal{O}_{D+k a}\right)=C^{0}\left(\mathfrak{U}, \mathcal{O}_{D}\right)$ satisfies $f_{i j}=f_{i}-f_{j}$ and hence $H^{1}(X \backslash\{a\})=0$.
b) Der folgende Beweis stammt von Ludwig Fürst: We take the Leray cover \mathfrak{U} of part a). A cocylce looks like $f=\sum_{k \in \mathbb{Z}} c_{k} z^{k}$ on the punctured neighbourhood $U \backslash\{a\}$. Since $H^{1}\left(\mathfrak{U}, \mathcal{O}_{(2 g-1) a}\right)=H^{1}\left(X, \mathcal{O}_{(2 g-1) a}\right)=0$ we know that $f=g-h$ with $g \in \mathcal{O}_{(2 g-1) a}(U)$ and $h \in \mathcal{O}_{(2 g-1) a}(V)=\mathcal{O}(V)$. Furthermore we find a holomorphic function $g^{\prime} \in \mathcal{O}(U)$ such that $f+h-g^{\prime}=\sum_{k=1}^{2 g-1} b_{k} z^{-k} \in \mathcal{O}_{(2 g-1) a}$ the principal part of $f+h$. We immediately get $H^{1}(X, \mathcal{O})=\mathbb{C}^{2 g-1} / L$.

