Riemann Surfaces Solution

Problem 45

Analogous to the discussion of problem 19 we see that X has exactly n branch points $(e^{2\pi i j/n}, 0), 0 \leq j < n$ of order n. Hence the ramification index is b = n(n-1). By Riemann-Hurwitz we get $g = \frac{n(n-1)}{2} + n(-1) + 1 = \frac{n^2 - 3n + 2}{2} = \frac{(n-1)(n-2)}{2}$.

Problem 46

We get four branch points $(a_j, 0), 1 \leq j \leq 4$. X has a branch point at ∞ : For $u = z^{-1}$ we get $w = \sqrt[3]{u^{-1}u^{-1}}\sqrt[3]{\prod_{j=1}^4(1-ua_j)} = \sqrt[3]{u^{-1}\frac{h(u)}{u}}$ for a holomorphic non-vanishing function h. Thus we get a branch point at ∞ . Hence b = 5(3-1) = 10 and g = 10/2 + 3(-1) + 1 = 3. Furthermore note that dim $H^0(X, \Omega) = \dim H^1(X, \mathcal{O}) = \dim H^0(X, \mathcal{O}) - 1 + g = g = 3$. The differential forms are obviously not linearly independent, thus it is enough to show that they are holomorphic on X. The σ_i are holomorphic outside the branch points. Now choose a local coordinate u_j with $u_j^3 = z - a_j$. Then

$$\sigma_1 = \frac{dz}{w} = \frac{3u_j^2 du_j}{u_j h_j(u_j)} = \frac{3u_j du_j}{h_{1j}(u_j)}, \quad \sigma_2 = \frac{3u_j^2 du_j}{u_j^2 h_j^2(u_j)} = \frac{3du_j}{h_{1j}(u_j)}, \quad \sigma_3 = \frac{(u_j^3 + a_j) du_j}{h_j^2(u_j)}$$

for a holomorphic non-vanishing function h_j . Finally we have to check holomorphicity at ∞ . Take a coordinate u_{∞} with $u_{\infty}^3 = z^{-1}$. We get

$$\sigma_1 = \frac{dz}{w} = \frac{-3u_{\infty}^{-4}du_{\infty}}{\sqrt[3]{u_{\infty}^{-3}\frac{h(u_{\infty}^3)}{u_{\infty}^3}}} = -\frac{3du_{\infty}}{h(u_{\infty}^3)}, \quad \sigma_2 = -\frac{3u_{\infty}^4du_{\infty}}{h(u_{\infty}^3)}, \quad \sigma_3 = -\frac{3u_{\infty}du_{\infty}}{h(u_{\infty}^3)}.$$

Problem 47

a) The long exact sequence to the given short exact sequence is

$$\mathcal{M}(X) \to \mathcal{Q}(X) \to H^1(X, \mathbb{C}) \to H^1(X, \mathcal{M}) = 0.$$

and we get $H^1(X, \mathbb{C}) \simeq \mathcal{Q}(X)/d\mathcal{M}(X)$.

b) By the theorem of deRham-Hodge we get $H^1(X, \mathbb{C}) \simeq \operatorname{Harm}^1(X) = \Omega(X) \oplus \overline{\Omega}(X)$ and dim(Harm¹(X)) = 2g = 2. Since $dz \notin \mathbb{C} \cdot \wp_{\Lambda} dz$ we get a basis $(dz, \wp_{\Lambda} dz)$.

Problem 48

- a) The divisor D has finite support on X and hence on U. On U we find a meromorphic function f_D with divisor $D|_U$, e.g. $\prod_{x \in \text{Supp}(D)} (z - x)^{D(x)}$. Then $\mathcal{O}_D \xrightarrow{\simeq} \mathcal{O}, g \mapsto gf_D$ is an isomorphism. Hence $H^1(U, \mathcal{O}_D) \simeq H^1(U, \mathcal{O})$. Construct a cover of $X \setminus \{a\}$ as follows: Take a punctured disc neighbourhood V_0 around a. Let $V_i, i \in \mathbb{Z}_+$ be small discs such that $a \notin \overline{V_i \cap V_0}$. As we have seen before $H^1(V_i, \mathcal{O}_D) = 0$ for discs and $H^1(V_0, \mathcal{O}_D) = 0$ for a ring area. Thus $\mathfrak{U} = (U_i)_{i \in \mathbb{N}}$ is a Leray cover of $X \setminus \{a\}$. Now take a cocycle $(f_{ij}) \in Z^1(\mathfrak{U}, \mathcal{O}_D)$. We add another chart V'_0 such that $a \in V'_0 \subset V_0, D|_{V'_0} = D(a)$ and $V'_0 \cap V_i = \emptyset$ for i > 0. We get a Leray covering \mathfrak{U}' of X. Since there are no triple intersections with V'_0 we can extend (f_{ij}) to a cocycle $(f'_{ij}) \in Z^1(\mathfrak{U}', \mathcal{O}_D)$ by choosing $f_{0'0}$ aribitrary holomorphic on $V'_0 \setminus \{a\}$. But then $(f'_{ij}) \in Z^1(\mathfrak{U}', \mathcal{O}_{D+ka})$ for every $k \in \mathbb{Z}$. If k is large enough such that $\deg(D+ka) > 2g-2$, then $H^1(\mathfrak{U}', \mathcal{O}_{D+ka}) = 0$. Thus $f_{ij} = f_i - f_j$ for $(f_i) \in C^0(\mathfrak{U}', \mathcal{O}_{D+ka})$. The reduced chain $(f_i) \in C^0(\mathfrak{U}, \mathcal{O}_{D+ka}) = C^0(\mathfrak{U}, \mathcal{O}_D)$ satisfies $f_{ij} = f_i - f_j$ and hence $H^1(X \setminus \{a\}) = 0$.
- b) Der folgende Beweis stammt von Ludwig Fürst: We take the Leray cover \mathfrak{U} of part a). A cocylce looks like $f = \sum_{k \in \mathbb{Z}} c_k z^k$ on the punctured neighbourhood $U \setminus \{a\}$. Since $H^1(\mathfrak{U}, \mathcal{O}_{(2g-1)a}) = H^1(X, \mathcal{O}_{(2g-1)a}) = 0$ we know that f = g - h with $g \in \mathcal{O}_{(2g-1)a}(U)$ and $h \in \mathcal{O}_{(2g-1)a}(V) = \mathcal{O}(V)$. Furthermore we find a holomorphic function $g' \in \mathcal{O}(U)$ such that $f + h - g' = \sum_{k=1}^{2g-1} b_k z^{-k} \in \mathcal{O}_{(2g-1)a}$ the principal part of f + h. We immediately get $H^1(X, \mathcal{O}) = \mathbb{C}^{2g-1}/L$.