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Problem 45

Analogous to the discussion of problem 19 we see thatX has exactly n branch points (e2πij/n, 0), 0 6
j < n of order n. Hence the rami�cation index is b = n(n − 1). By Riemann-Hurwitz we get

g = n(n−1)
2

+ n(−1) + 1 = n2−3n+2
2

= (n−1)(n−2)
2

.

Problem 46

We get four branch points (aj, 0), 1 6 j 6 4. X has a branch point at ∞: For u = z−1 we

get w =
3
√
u−1u−1 3

√∏4
j=1(1− uaj) =

3
√
u−1 h(u)

u
for a holomorphic non-vanishing function h.

Thus we get a branch point at ∞. Hence b = 5(3 − 1) = 10 and g = 10/2 + 3(−1) + 1 = 3.
Furthermore note that dimH0(X,Ω) = dimH1(X,O) = dimH0(X,O) − 1 + g = g = 3. The
di�erential forms are obviously not linearly independent, thus it is enough to show that they
are holomorphic on X. The σi are holomorphic outside the branch points. Now choose a local
coordinate uj with u

3
j = z − aj. Then

σ1 =
dz

w
=

3u2
jduj

ujhj(uj)
=

3ujduj
h1j(uj)

, σ2 =
3u2

jduj

u2
jh

2
j(uj)

=
3duj
h1j(uj)

, σ3 =
(u3

j + aj)duj

h2
j(uj)

for a holomorphic non-vanishing function hj. Finally we have to check holomorphicity at ∞.
Take a coordinate u∞ with u3

∞ = z−1. We get

σ1 =
dz

w
=
−3u−4

∞ du∞
3
√
u−3
∞

h(u3∞)
u3∞

= − 3du∞
h(u3

∞)
, σ2 = −3u4

∞du∞
h(u3

∞)
, σ3 = −3u∞du∞

h(u3
∞)

.

Problem 47

a) The long exact sequence to the given short exact sequence is

M(X)→ Q(X)→ H1(X,C)→ H1(X,M) = 0.

and we get H1(X,C) ' Q(X)/dM(X).

b) By the theorem of deRham-Hodge we get H1(X,C) ' Harm1(X) = Ω(X) ⊕ Ω(X) and
dim(Harm1(X)) = 2g = 2. Since dz /∈ C · ℘Λdz we get a basis (dz, ℘Λdz).
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Problem 48

a) The divisor D has �nite support on X and hence on U . On U we �nd a meromorphic

function fD with divisor D|U , e.g.
∏

x∈Supp(D)(z − x)D(x). Then OD
'−→ O, g 7→ gfD is an

isomorphism. Hence H1(U,OD) ' H1(U,O). Construct a cover of X \ {a} as follows:
Take a punctured disc neighbourhood V0 around a. Let Vi, i ∈ Z+ be small discs such
that a /∈ Vi ∩ V0. As we have seen before H1(Vi,OD) = 0 for discs and H1(V0,OD) = 0
for a ring area. Thus U = (Ui)i∈N is a Leray cover of X \ {a}. Now take a cocycle
(fij) ∈ Z1(U,OD). We add another chart V ′0 such that a ∈ V ′0 ⊂ V0, D|V ′

0
= D(a) and

V ′0 ∩ Vi = ∅ for i > 0. We get a Leray covering U′ of X. Since there are no triple
intersections with V ′0 we can extend (fij) to a cocycle (f ′ij) ∈ Z1(U′,OD) by choosing f0′0

aribitrary holomorphic on V ′0 \{a}. But then (f ′ij) ∈ Z1(U′,OD+ka) for every k ∈ Z. If k is
large enough such that deg(D+ka) > 2g−2, then H1(U′,OD+ka) = 0. Thus fij = fi−fj
for (fi) ∈ C0(U′,OD+ka). The reduced chain (fi) ∈ C0(U,OD+ka) = C0(U,OD) satis�es
fij = fi − fj and hence H1(X \ {a}) = 0.

b) Der folgende Beweis stammt von Ludwig Fürst: We take the Leray cover U of part a).
A cocylce looks like f =

∑
k∈Z ckz

k on the punctured neighbourhood U \ {a}. Since
H1(U,O(2g−1)a) = H1(X,O(2g−1)a) = 0 we know that f = g− h with g ∈ O(2g−1)a(U) and
h ∈ O(2g−1)a(V ) = O(V ). Furthermore we �nd a holomorphic function g′ ∈ O(U) such

that f + h − g′ =
∑2g−1

k=1 bkz
−k ∈ O(2g−1)a the principal part of f + h. We immediately

get H1(X,O) = C2g−1/L.
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