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Riemann Surfaces
Solution

Problem 45

Analogous to the discussion of problem 19 we see that X has exactly n branch points (e%ij/”, 0),0 <
j < n of order n. Hence the ramification index is b = n(n — 1). By Riemann-Hurwitz we get
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Problem 46

We get four branch points (a;,0),1 < j < 4. X has a branch point at co: For u = 27! we

get w = v u—lu_l\B/Hﬁzl(l —ua;) = v u—1@ for a holomorphic non-vanishing function h.
Thus we get a branch point at co. Hence b = 5(3 — 1) = 10 and g = 10/2 + 3(—1) + 1 = 3.
Furthermore note that dim H°(X, Q) = dim H*(X,0) = dim H*(X,0) — 1+ g = g = 3. The
differential forms are obviously not linearly independent, thus it is enough to show that they
are holomorphic on X. The o; are holomorphic outside the branch points. Now choose a local

coordinate u; with uf =z —a;. Then

dz 3u§duj _ Buydu; 3U?duj 3du; (Uf + aj)du;
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for a holomorphic non-vanishing function h;. Finally we have to check holomorphicity at oo.
Take a coordinate u., with u2, = 271, We get

dz  —3uldus 3du, 3ul dus oo Al
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Problem 47

a) The long exact sequence to the given short exact sequence is
M(X) = 9(X) = HY(X,C) - H'(X, M) = 0.
and we get H'(X,C) ~ Q(X)/dM(X).

b) By the theorem of deRham-Hodge we get H'(X,C) ~ Harm'(X) = Q(X) @ Q(X) and
dim(Harm' (X)) = 29 = 2. Since dz ¢ C - padz we get a basis (dz, padz).



Problem 48

a)

The divisor D has finite support on X and hence on U. On U we find a meromorphic
function fp with divisor D|y, e.g. [ csuppo)(? = z)P@) Then Op = O, g — gfp is an
isomorphism. Hence H'(U,Op) ~ H*(U,O). Construct a cover of X \ {a} as follows:
Take a punctured disc neighbourhood Vjy around a. Let V;,i € Z, be small discs such
that a ¢ V; N Vp. As we have seen before H'(V;, Op) = 0 for discs and H'(Vy,Op) = 0
for a ring area. Thus Y = (U;);en is a Leray cover of X \ {a}. Now take a cocycle
(fij) € Z'(4h,Op). We add another chart Vj such that a € Vi C Vj, D|yy = D(a) and
ViNnV, =0 for i > 0. We get a Leray covering ' of X. Since there are no triple
intersections with V{j we can extend (f;;) to a cocycle (f};) € Z'(l', Op) by choosing fog
aribitrary holomorphic on Vj\{a}. But then (f];) € Z' (&, Opyra) for every k € Z. If k is
large enough such that deg(D +ka) > 2g —2, then H' (Y, Opira) = 0. Thus fi; = fi— f;
for (f;) € C°(W,Opira). The reduced chain (f;) € C°(U, Opira) = C°(U, Op) satisfies
fi; = fi — f; and hence H'(X \ {a}) = 0.

Der folgende Beweis stammt von Ludwig Fiirst: We take the Leray cover i of part a).
A cocylce looks like f = Y, , 2" on the punctured neighbourhood U \ {a}. Since
HY (U, Opg-1ya) = H (X, Og-1)a) = 0 we know that f = g —h with g € O(35-1),(U) and
h € Opyg_1.(V) = O(V). Furthermore we find a holomorphic function ¢ € O(U) such
that f+h —¢ = ig:—ll bz F € O(2g-1)o the principal part of f 4 h. We immediately
get HY(X,0) =C%~1/L.



