Übungen zur Analysis 3

Bitte markieren Sie auf Ihrer Lösung zwei Aufgaben, die bevorzugt korrigiert werden sollen. Wir wünschen allen Studenten frohe Weihnachten und ein gutes neues Jahr!

13.1 ε Fläche eines Hyperbelsektors. Berechnen Sie für a>0 den Flächeninhalt $\lambda_2(A)$ des Hyperbelsektors

$$A = \{ (r \cosh s, r \sinh s) | 0 < r < 1, 0 < s < a \}$$

und vergleichen Sie mit der (damals anschaulich-heuristischen) Rechnung aus der Analysis 1.

- 13.2 Integral über Blätterungen durch Hyperflächen.
 - (a) Es sei $U \subseteq \mathbb{R}^n$ offen und $f: U \to \mathbb{R}$ stetig differenzierbar mit $df_x \neq 0$ für alle $x \in U$, so dass die Niveaugebilde $M_t := f^{-1}(\{t\}), t \in \mathbb{R}$ Hyperflächen in \mathbb{R}^n (oder leer) sind. Zeigen Sie für alle $g \in \overline{M}_+(U, \mathcal{B}(U))$:

$$\int_{U} g \, d\lambda_n = \int_{\mathbb{R}} \int_{M_t} \frac{g(x)}{\|\nabla f(x)\|_2} \, \omega^{M_t}(dx) \, dt.$$

- (b) Überzeugen Sie sich davon, dass man im Spezialfall $U = \mathbb{R}^n \setminus \{0\}$, $f(x) = ||x||_2$ hieraus wieder die Formel (61) aus Übung 2.56 erhält.
- **13.3** Es sei ω eine glatte p-Form auf einer offenen Menge $U \subseteq \mathbb{R}^n$, $x \in U$ und $v_0, \ldots, v_p \in \mathbb{R}^n$. Beweisen Sie

$$d\omega_x(v_0,\ldots,v_p) = \sum_{k=0}^n (-1)^k \tilde{d}\omega_x(v_k)(v_0,\ldots,v_p), \tag{1}$$

wobei d die äußere Ableitung und \tilde{d} die Ableitung aus der Analysis 2 bezeichnet. Hinweis: Laplace-Entwicklung von Determinanten

13.4 Sei $f: \mathbb{R}^3 \setminus \{0\} \to \mathbb{R}$ glatt,

$$h:]0, 2\pi[\times] - \frac{\pi}{2}, \frac{\pi}{2}[\times]0, \infty[\to \mathbb{R}^3 \setminus \{0\},$$

$$h(\phi, \theta, r) = (r\cos\theta\cos\phi, r\cos\theta\sin\phi, r\sin\theta)$$

die Umrechnung in Kugelkoordinaten, und $F = f \circ h$.

(a) Zeigen Sie:

$$(\Delta f) \circ h = \frac{1}{r^2} \frac{\partial}{\partial r} \left(r^2 \frac{\partial F}{\partial r} \right) + \frac{1}{r^2 \cos \theta} \frac{\partial}{\partial \theta} \left(\cos \theta \frac{\partial F}{\partial \theta} \right) + \frac{1}{r^2 \cos^2 \theta} \frac{\partial^2 F}{\partial \phi^2}$$

Der Kürze halber sind hier die Argumente (ϕ, θ, r) weggelassen.

(b) Wenden Sie diese Formel für $f(x) = x_3 e^{-\|x\|_2}$, $x = (x_1, x_2, x_3)$ an. Berechnen Sie zur Kontrolle auch $(\Delta f) \circ h$ direkt und versuchen Sie, übereinstimmende Ergebnisse zu erhalten.

 $\bf Abgabe:$ Bis spätestens Montag, den 27.01.2014, 11:00 Uhr, durch Einwurf in den entsprechenden Übungskasten.

Präsenzaufgaben zu Blatt 13

T13.1 Zeigen Sie: Es seien $V \subseteq \mathbb{R}^m$, $U \subseteq \mathbb{R}^n$ offen und $f: V \to U$ eine *Immersion*, d.h. f sei stetig differenzierbar und df_x besitze an jeder Stelle $x \in V$ den Rang m. Zeigen Sie: Der Rückzug f^*g einer Riemannschen Metrik g auf U ist eine Riemannsche Metrik auf V. Wird g durch $G = (g_{\mu\nu})_{\mu,\nu=1,\dots,n}: U \to \mathbb{R}^{n\times n}$ dargestellt, so wird f^*g durch

$$U \ni x \mapsto Df(x)^t \cdot G(f(x)) \cdot Df(x) \in \mathbb{R}^{m \times m}$$

dargestellt.

- **T13.2** Es seien $\omega = ye^{-x^2} dx + e^{-x^2} dz$ und $\lambda = x dy + dz$. Berechnen Sie zunächst $\omega \wedge \lambda$, $d\omega$ und $d\lambda$. Berechnen Sie daraus $d(\omega \wedge \lambda)$ unter Verwendung der Produktregel und auch ohne diese; versuchen Sie, auf beiden Wegen übereinstimmende Ergebnisse zu erreichen.
- **T13.3** Berechnen Sie $d\omega$, $f^*\omega$, $f^*(d\omega)$ und $d(f^*\omega)$ für die 1-Form $\omega = x\,dy y\,dx$ auf \mathbb{R}^2 und die Abbildung $f: \mathbb{R}^2 \to \mathbb{R}^2$, $f(r,\phi) = (r\cos\phi, r\sin\phi)$.
- T13.4 Isomorphie zwischen Vektoren und n-1-Formen durch Volumenform. Ist V ein n-dimensionaler Vektorraum und ω eine Basis von $\bigwedge^n V'$, so ist

$$*_{\omega}: V \to \bigwedge^{n-1} V', \quad *_{\omega}(v) = i_v(\omega) = \omega(v, \underbrace{\cdot, \dots, \cdot}_{\substack{n-1 \text{Argumente}}})$$

ein Isomorphismus.

Aufgaben mit einem "T" werden üblicherweise in den Tutorien als Präsenzaufgaben gestellt. Entsprechend sind diese Aufgaben **nicht** abzugeben, sie werden nicht korrigiert und es werden keine Musterlösungen dazu veröffentlicht. Aufgaben mit einem " ε " haben eine kurze Lösung. Aufgaben mit einem " ε " sind oft schwierig und/oder zeitaufwendig.