Übungen zur Analysis 3

2.1ε (σ -)Subadditivität.

(a) Es sei μ ein Inhalt auf einer Mengenalgebra \mathcal{A} . Zeigen Sie: Für $n \in \mathbb{N}$ und $A_1, \ldots, A_n \in \mathcal{A}$ gilt

$$\mu\left(\bigcup_{j=1}^{n} A_j\right) \le \sum_{j=1}^{n} \mu(A_j).$$

(b) Nun sei μ sogar ein Maß auf einer σ -Algebra \mathcal{A} . Zeigen Sie: Ist $(A_n)_{n\in\mathbb{N}}$ eine Folge mit Werten in \mathcal{A} , so gilt

$$\mu\left(\bigcup_{n\in\mathbb{N}}A_n\right)\leq\sum_{n\in\mathbb{N}}\mu(A_n).$$

Lösung

(a) Mit Induktionsanfang $\mu(A_1) \leq \sum_{j=1}^{1} \mu(A_j)$ und Induktionsschluss

$$\mu\left(\bigcup_{j=1}^{n} A_{j}\right) \leq \mu\left(\bigcup_{j=1}^{n-1} A_{j}\right) + \mu(A_{n}) - \mu\left(A_{n} \cap \bigcup_{j=1}^{n-1} A_{j}\right) \stackrel{IV}{\leq} \sum_{j=1}^{n} \mu(A_{j})^{1}$$

folgt die Aussage (vgl. Aufgabe 1.4).

- (b) Sei $\tilde{A}_1 := A_1$ und $\tilde{A}_i := A_i \setminus \left(A_i \cap \bigcup_{j < i} \tilde{A}_j\right) \in \mathcal{A}$. Dann ist $\bigcup_{j=1}^n A_j = \bigcup_{j=1}^n \tilde{A}_j$ für alle $n \in \mathbb{N} \cup \{\infty\}$ und die zweite Vereinigung ist disjunkt. Mit σ -Additivität und $\tilde{A}_i \subset A_j$, $\forall j \in \mathbb{N} \Rightarrow \mu(\tilde{A}_j) \leq \mu(A_j)$, $\forall j \in \mathbb{N}$ folgt das Ergebnis.
- **2.2** Es sei $\Omega = \mathbb{R}$. Zeigen Sie, dass folgende Mengensysteme $\mathcal{E}_1, \mathcal{E}_2, \mathcal{E}_3, \mathcal{E}_4$ alle die gleiche σ -Algebra \mathcal{A} über \mathbb{R} erzeugen:
 - (a) $\mathcal{E}_1 = \{ [a, b[| a, b \in \mathbb{R} \cup \{\pm \infty\}, a < b \} \text{ sei die Menge der offenen Intervalle.} \}$
 - (b) $\mathcal{E}_2 = \{[a, b] | a, b \in \mathbb{R}, a \leq b\}$ sei die Menge der kompakten Intervalle.
 - (c) $\mathcal{E}_3 = \{]-\infty, a] | a \in \mathbb{R} \}$ sei die Menge der linksseitig unendlichen abgeschlossenen Intervalle.
 - (d) $\mathcal{E}_4 = \{]a, b] \cap \mathbb{R} | a, b \in \mathbb{R} \cup \{ \pm \infty \} \}$

¹Die Rechnung gilt falls $\mu(A_i) \neq \infty$, $\forall 1 \leq i \leq n$. Der Fall $\mu(A_j) = \infty$ für eine $1 \leq j \leq n$ ist trivial.

Lösung

Lösung

Wir verwenden Aufgabe T2.2 um die Gleichheit der σ -Algebren zu zeigen. Hierfür gibt es viele Möglichkeiten. Wir zeigen folgende Inklusionen:

$$\mathcal{E}_2 \subset \sigma(\mathcal{E}_1), \mathcal{E}_1 \subset \sigma(\mathcal{E}_3), \mathcal{E}_3 \subset \sigma(\mathcal{E}_4), \mathcal{E}_4 \subset \sigma(\mathcal{E}_2),$$

woraus mit T2.2(b) folgt

$$\sigma(\mathcal{E}_2) \subset \sigma(\mathcal{E}_1) \subset \sigma(\mathcal{E}_3) \subset \sigma(\mathcal{E}_4) \subset \sigma(\mathcal{E}_2),$$

also Gleichheit.

$$\mathcal{E}_2 \subset \sigma(\mathcal{E}_1)$$
: $[a,b] = (]-\infty, a[\cup]a,\infty[)^c$.

$$\mathcal{E}_1 \subset \sigma(\mathcal{E}_3)$$
: $]a, b[=] - \infty, a]^c \setminus [b, \infty[\text{ und } [b, \infty[=(\cup_{n \geq 1}] - \infty, b - \frac{1}{n}])^c]$

$$\mathcal{E}_3 \subset \sigma(\mathcal{E}_4)$$
: $]-\infty,b]=]a,b]\cap \mathbb{R}$ mit $a=-\infty$

 $\mathcal{E}_4 \subset \sigma(\mathcal{E}_2)$:

- $a, b = \pm \infty$: $|a, b| \cap \mathbb{R} =]-\infty, \infty [= \cup_{n > 1} [-n, n]$
- $a > -\infty, b = \infty$: $]a, b] \cap \mathbb{R} =]a, \infty[= \cup_{n \ge 1}[a, a + n] \setminus [a 1, a]$
- $a = -\infty, b < \infty$: $[a, b] \cap \mathbb{R} =]-\infty, b] = \bigcup_{n>1} [b-n.b]$
- $a > -\infty, b < \infty$: $]a, b] \cap \mathbb{R} =]a, b] = [a, b] \setminus [a 1, a]$
- **2.3** Zeigen Sie, dass die folgenden Teilmengen von \mathbb{R} Borelmengen sind:
 - (a) \mathbb{Q} und $\mathbb{R} \setminus \mathbb{Q}$,
 - (b) $\bigcup_{n \in \mathbb{N}} \left[\frac{1}{n^2}, \frac{1}{n^2+1} \right],$
 - (c) die Menge A aller Zahlen $x \in [0, 1[$, in deren Dezimaldarstellung eine Ziffer "3" vorkommt,
 - (d) die Menge B aller Zahlen $x \in [0, 1[$, in deren Dezimaldarstellung unendlich oft die Ziffer "3", aber nur endlich oft die Ziffer "4" vorkommt.

Lösung

- (a) Für alle $r \in R$ ist $\mathbb{R} \setminus \{r\}$ offen, also $\{r\} \in \mathcal{B}(\mathbb{R})$ und somit ist auch $\mathbb{Q} = \bigcup_{q \in \mathbb{Q}} q$ als abzählbare Vereinigung eine Borelmenge. Als Komplement ist auch $\mathbb{R} \setminus \mathbb{Q} \in \mathcal{B}(\mathbb{R})$.
- (b) Als abzählbare Vereinigung abgeschlossener Mengen (d. h. von Komplementen offener Mengen) ist $\bigcup_{n\in\mathbb{N}} \left[\frac{1}{n^2}, \frac{1}{n^2+1}\right]$ Borelmenge.
- (c) Sei $x := \sum_{i=1}^{\infty} x_i 10^{-i}$, $x_i \in \{0, \dots, 9\}$ und $X_i := \{x \in [0, 1[|x_i = 3\}] \text{ Es ist } X_i = \bigcup_{\substack{j = \sum_{j=1}^{i-1} a_j 10^{-j} \\ a_j \in \{0, \dots, 9\}}} X_i^j, X_i^j := j + [3 \cdot 10^{-i}, 4 \cdot 10^{-i}[=j + [3 \cdot 10^{-i}, 4 \cdot 10^{-i}] \setminus \{4 \cdot 10^{-i}\} \in \mathcal{B}(\mathbb{R})$

(vgl. Aufgabe 1.1 ε). Folglich ist auch $A = \bigcup_{i \in \mathbb{N}} X_i$ Borelmenge.

(d) Sei $x := \sum_{i=1}^{\infty} x_i 10^{-i}$, $x_i \in \{0, \ldots, 9\}$ und $X(k,i) := \{x \in [0,1[|x_j \neq k, \forall j > i\}]$. Dann gilt $B = (\bigcup_{n \in \mathbb{N}} X(4,i)) \cap (\bigcup_{n \in \mathbb{N}} X(3,i))^c$ Borelmenge.

Bemerkung. Die Dezimaldarstellung von Zahlen $q \in \mathbb{Q}$ ist nicht eindeutig, z. B. $0,2999\ldots=0,3$. Fordert man, dass eine Zahl bzgl. jeder Darstellung eine gewisse Ziffer $(\neq 9)$ enthält, dann erhalten wir z. B. in (c) X_i^j als offenes und nicht als halboffenes Intervall. Dies ist natürlich auch eine Borelmenge.

2.4 Klassifizierung von σ -Algebren auf abzählbaren Mengen. (Fortsetzung von Aufgabe 1.3)

- (a) Es sei Ω eine endliche oder abzählbar unendliche Menge, $\Sigma(\Omega)$ das Mengensystem aller Σ -Algebren darüber, und $\Pi(\Omega)$ das Mengensystem aller Partitionen darüber. Beweisen Sie, dass die Abbildung part : $\Sigma(\Omega) \to \Pi(\Omega)$, $\mathcal{A} \mapsto \operatorname{part}(\mathcal{A})$ aus Übung 1.6 und die Abbildung $\sigma: \Pi(\Omega) \to \Sigma(\Omega)$, $\mathcal{E} \mapsto \sigma(\mathcal{E})$ zueinander inverse Bijektionen sind.
- (b) Zählen Sie alle σ -Algebren auf der Menge $\Omega = \{1, 2, 3, 4\}$ auf.

Lösung

(a) $\sigma \circ \operatorname{part}(\mathcal{A}) = \mathcal{A}$: Es ist $\sigma(\operatorname{part}(\mathcal{A})) \subset \mathcal{A}$, denn $A(\omega) \in \mathcal{A}$ für alle ω und somit ist $\operatorname{part}(\mathcal{A}) \subset \mathcal{A}$. Aus T2.2 folgt also $\sigma(\operatorname{part}(\mathcal{A})) \subset \mathcal{A}$.

Für die umgekehrte Inklusion sei $B \in \mathcal{A}$. Dann gilt nach Aufgabe 1.3(d), dass $B = \bigcup_{\omega \in B} A(\omega)$, wobei nach Voraussetzung $A(\omega) \in \operatorname{part}(\mathcal{A})$ ist. Also ist B als Vereinigung von Elementen des Erzeugendensystems von $\sigma(\operatorname{part}(\mathcal{A}))$ ein Element von $\sigma(\operatorname{part}(\mathcal{A}))$ und damit gilt $\mathcal{A} \subset \sigma(\operatorname{part}(\mathcal{A}))$.

<u>part</u> $\circ \sigma = \text{id}$: Sei $\Omega = \coprod_i B_i$ eine Partition von Ω . Wir zeigen, dass $\{B_i\}_i \subset \text{part}(\sigma(\{B_i\}_i), \text{woraus bereits Gleichheit folgt, da } \{B_i\}_i$ nach Voraussetzung eine Partition von Ω war.

Setze $\mathcal{A} = \sigma(\{B_i\}_i)$. Wegen $B_k \in \sigma(\{B_i\}_i)$ gilt nach 1.3 (d) $B_k = \bigcup_{\omega \in B_k} A(\omega)$. Wir behaupten, dass bereits $B_k = A(\omega)$ für ein beliebiges $\omega \in B_k$ gilt. Damit folgt, dass $B_k \in \operatorname{part}(\sigma(\{B_i\}_i))$ und damit die Behauptung der Aufgabe.

Sei also $\omega \in B_k$. In Aufgabe 1.3 (b) haben wir gesehen, dass $A(\omega)$ die kleinste Menge in $\mathcal{A} = \sigma(\{B_i\}_i)$ ist, die ω enthält. Diese muss aber B_k sein, denn alle Mengen in $\sigma(\{B_i\}_i)$ entstehen durch Vereinigen, Schneiden und Komplementbilden von Mengen aus $\{B_i\}_i$. Da die B_i aber paarweise disjunkt sind, können wir auf diese Weise keine echten, nichtleeren Teilmengen von B_k bilden, denn:

Durch Schneiden, Vereinigen und Komplementbilden von Mengen aus $\{B_i\}_i$ erhalten wir stets nur Mengen B mit $B_k \subset B$ oder $B_k \cap B = \emptyset$. Wiederum durch Schneiden, Vereinigen und Komplementbilden solcher Mengen B erhalten wir wieder nur Mengen B mit $B_k \subset B$ oder $B_k \cap B = \emptyset$. Es ist also B_k die kleinste Menge in $\sigma(\{B_i\}_i)$ die $\omega \in B_k$ enthält.

(b) Nach (a) genügt es, alle Partitionen von Ω zu betrachten. Die Beobachtung, dass jeweils B_k die kleinsten Menge in $\sigma(\{BB_i\}_i)$ ist, welche die Elemente von B_k enthält, ist nützlich um die zugehörigen σ -Algebren zu berechnen.

Insgesamt gibt es 18 Partitionen von $\{1, 2, 3, 4\}$, nämlich eine bestehend aus einer einzigen Menge, $\binom{4}{2} + \binom{4}{1} = 3 + 4 = 7$ bestehend aus zwei Mengen, $\binom{4}{2} = 4$ bestehend aus drei Mengen und eine bestehende aus vier Mengen. Die Partitionen sind

(a) $\{\Omega\}$ und die zugehörige σ -Algebra ist die triviale σ -Algebra $\{\emptyset, \Omega\}$;

- (b) $\{\{1,2\},\{3,4\}\}$ mit zug. σ -Algebra $\{\emptyset,\{1,2\},\{3,4\},\Omega\}$;
- (c) $\{\{1,3\},\{2,4\}\}$ mit zug. σ -Algebra $\{\emptyset,\{1,3\},\{2,4\},\Omega\}$;
- (d) $\{\{1,4\},\{2,3\}\}$ mit zug. σ -Algebra $\{\emptyset,\{1,4\},\{2,3\},\Omega\}$;
- (e) $\{\{1,2,3\},\{4\}\}$ mit zug. σ -Algebra $\{\emptyset,\{1,2,3\},\{4\},\Omega\};$
- (f) $\{\{1,2,4\},\{3\}\}$ mit zug. σ -Algebra $\{\emptyset,\{1,2,4\},\{3\},\Omega\}$;
- (g) $\{\{1,3,4\},\{2\}\}$ mit zug. σ -Algebra $\{\emptyset,\{1,3,4\},\{2\},\Omega\}$;
- (h) $\{\{2,3,4\},\{1\}\}\$ mit zug. σ -Algebra $\{\emptyset,\{1\},\{2,3,4\},\Omega\};$
- (i) $\{\{1,2\},\{3\},\{4\}\}$ mit zug. σ -Algebra $\{\emptyset,\{3\},\{4\},\{1,2\},\{4,5\},\{1,2,3\},\{1,2,4\},\Omega\}$;
- (j) $\{\{2,3\},\{1\},\{4\}\}$ mit zug. σ -Algebra $\{\emptyset,\{1\},\{4\},\{1,4\},\{2,3\},\{1,2,3\},\{2,3,4\},\Omega\}$;
- (k) $\{\{3,4\},\{1\},\{2\}\}\}$ mit zug. σ -Algebra $\{\emptyset,\{1\},\{2\},\{1,2\},\{3,4\},\{1,3,4\},\{2,3,4,\},\Omega\}$;
- (l) $\{1,3\},\{2\},\{4\}\}$ mit zug. σ -Algebra $\{\emptyset,\{2\},\{4\},\{1,3\},\{2,4\},\{1,2,3\},\{1,3,4\},\Omega\};$
- (m) $\{1,4\},\{2\},\{3\}\}$ mit zug. σ -Algebra $\{\emptyset,\{2\},\{3\},\{1,4\},\{2,3\},\{1,2,4\},\{1,3,4\},\Omega\};$
- (n) $\{2,4\},\{1\},\{3\}$ mit zug. σ -Algebra $\{\emptyset,\{1\},\{3\},\{1,3\},\{2,4\},\{1,2,4\},\{2,3,4\},\Omega\};$
- (o) $\{\{1\}, \{2\}, \{3\}, \{4\}\}$ mit zug. σ -Algebra 2^{Ω} .

Es gibt also insgesamt 8 σ -Algebren über der Menge $\{1, 2, 3, 4\}$.

- 2.5* Produkte von Mengenalgebren und Inhalten. Für j=1,2 seien Ω_j eine Menge, \mathcal{A}_j eine Mengenalgebra darüber und $\mu_j: \mathcal{A}_j \to [0,\infty]$ ein Inhalt. Weiter sei $\Omega = \Omega_1 \times \Omega_2$ und \mathcal{A} die Menge aller endlichen Vereinigungen von Rechtecken $A_1 \times A_2$ mit Seiten $A_1 \in \mathcal{A}_1$ und $A_2 \in \mathcal{A}_2$. Zeigen Sie:
 - (a) Jedes Element von \mathcal{A} kann als endliche Vereinigung von paarweise disjunkten Rechtecken $A_1 \times A_2$ mit Seiten $A_1 \in \mathcal{A}_1$ und $A_2 \in \mathcal{A}_2$ dargestellt werden.
 - (b) \mathcal{A} ist eine Mengenalgebra über Ω .
 - (c) Es gibt genau einen Inhalt $\mu: \mathcal{A} \to [0, \infty]$ mit $\mu(A_1 \times A_2) = \mu_1(A_1)\mu_2(A_2)$ für $A_1 \in \mathcal{A}_1$ und $A_2 \in \mathcal{A}_2$.

Insbesondere gibt es für alle $n \in \mathbb{N}$ genau einen Inhalt μ_n auf der Mengenalgebra aller endlichen Vereinigungen von Quadern $\prod_{j=1}^n [a_j, b_j]$, $a_j \leq b_j$ in $[-\infty, \infty]$, mit $\mu(\prod_{j=1}^n [a_j, b_j]) = \prod_{j=1}^n (b_j - a_j)$.

Lösung

Man veranschauliche sich das Vorgehen jeweils mit einer entsprechenden Zeichnung von Quadern in \mathbb{R}^2 .

(a) Beachte $(a_1, a_2) \in A_1 \cap A_2 \Leftrightarrow a_1 \in A_1$ und $a_2 \in A_2$. Entsprechend ist $W := (A_1 \times A_2) \cap (B_1 \times B_2) = (A_1 \cap B_1) \times (A_2 \cap B_2)$. Wir zeigen zunächst, dass sich $A_1 \times A_2 \setminus W$ in disjunkte Quader zerlegen lässt:

$$A_1 \times A_2 \setminus W = (A_1 \setminus (A_1 \cap B_1)) \times (A_2 \setminus (A_2 \cap B_2)) \dot{\cup} (A_1 \setminus (A_1 \cap B_1)) \times (A_2 \cap B_2) \dot{\cup} (A_1 \cap B_1) \times (A_2 \setminus (A_2 \cap B_2)).$$

Analog zerlege man $B_1 \times B_2 \setminus W$. Sei nun $\bigcup_{j=1}^n C_1^j \times C_2^j \in \mathcal{A}$ beliebig. Mit Induktion nach n (bei trivialem Induktionsanfang) ist

$$\bigcup_{j=1}^{n} C_1^j \times C_2^j \stackrel{IV}{=} C_1^n \times C_2^n \cup \coprod_{j=1}^{l} \tilde{C}_1^j \times \tilde{C}_2^j$$

für paarweise disjunkte $\tilde{C}_1^j \times \tilde{C}_2^j$. Aber $C_1^n \times C_2^n \cap \coprod_{j=1}^l \tilde{C}_1^j \times \tilde{C}_2^j = \coprod_{j=1}^l \left(\tilde{C}_1^j \times \tilde{C}_2^j \cap C_1^n \times C_2^n \right)$ zerfällt wie oben in disjunkte Quader. Ebenso

$$\left(\coprod_{j=1}^l \tilde{C}_1^j \times \tilde{C}_2^j\right) \setminus \left(C_1^n \times C_2^n \cap \coprod_{j=1}^l \tilde{C}_1^j \times \tilde{C}_2^j\right) = \coprod_{j=1}^l \tilde{C}_1^j \times \tilde{C}_2^j \setminus \left(C_1^n \times C_2^n \cap \tilde{C}_1^j \times \tilde{C}_2^j\right).$$

Schließlich ist

$$\begin{split} &(C_1^n \times C_2^n) \setminus \left(C_1^n \times C_2^n \cap \coprod_{j=1}^l \tilde{C}_1^j \times \tilde{C}_2^j \right) \\ &= (C_1^n \times C_2^n) \setminus \coprod_{j=1}^l \left(C_1^n \times C_2^n \cap \tilde{C}_1^j \times \tilde{C}_2^j \right) \\ &= \left(\coprod_{i=1}^k \hat{C}_1^i \times \hat{C}_2^i \right) \setminus \coprod_{j=1}^{l-1} \left(C_1^n \times C_2^n \cap \tilde{C}_1^j \times \tilde{C}_2^j \right) \\ &= \coprod_{i=1}^k \left(\hat{C}_1^i \times \hat{C}_2^i \setminus \coprod_{j=1}^{l-1} \left(\hat{C}_1^n \times \hat{C}_2^n \cap \tilde{C}_1^j \times \tilde{C}_2^j \right) \right). \end{split}$$

In Worten: Wir nehmen aus unserem Quader $(C_1^n \times C_2^n)$ einen Quader $(C_1^n \times C_2^n \cap \tilde{C}_1^l \times \tilde{C}_2^l)$ heraus. Wie wir oben gesehen haben zerfällt die resultierende Menge in disjunkte Quader $\hat{C}_1^i \times \hat{C}_2^i$. Aus diesen disjunkten Quadern müssen jetzt (jeweils) nur noch maximal l-1 Schnittmengen entfernt werden, d. h. nach endlich vielen Schritten sind wir fertig.

- (b) Offensichtlich ist $\Omega = \Omega_1 \times \Omega_2 \in \mathcal{A}$. Weiter haben wir in Teil (a) gesehen, dass das Komplement eines Quaders in Quader zerfällt.² Die Vereinigung von $A, B \in \mathcal{A}$ ist nach Definition ebenfalls in \mathcal{A} .
- (c) Sei $A \in \mathcal{A}$ beliebig und $A = \coprod_{j=1}^n C_j$, $C_j := C_1^j \times C_2^j$ eine Zerlegung in disjunkte Quader, die nach (a) existiert. Wir definieren $\mu(A) := \sum_{j=1}^n \mu(C_j)$ und $\mu(C_j) := \mu_1(C_1^j)\mu_2(C_2^j)$.

Behauptung 1. Die nicht negative Zahl μ ist unabhängig von der gewählten disjunkten Zerlegung.

Beweis. Sei $A = \coprod_{j=1}^n D_j$, $D_j := D_1^j \times D_2^j$ eine weitere disjunkte Zerlegung. Wegen $C_i = \coprod_{j=1}^n \underbrace{C_i \cap D_j}_{=:\coprod_{\hat{l}} \hat{E}_{\hat{l}}} = \coprod_{l=1}^k E_{il}^3$ erhalten wir die feinere disjunkte Zerlegung von

²Für den Quader B wähle $A_i = \Omega_i, \ i = 1, 2$ und $W = \Omega \cap B = B$ um $B^c = A_1 \times A_2 \setminus W \in \mathcal{A}$ zu schließen.

 $^{{}^3}E_{il}$ durchläuft die disjunkten Zerlegungen $\hat{E}_{\hat{l}}$ aller $D_i \cap C_j$.

Quadern E_{il} von A (vgl. (a)). Wenn wir zeigen können, dass μ für die Zerlegungen $(C_i)_i$ und $(E_{il})_{il}$ gleich ist, dann folgt dies auch analog für $(D_i)_i$ und $(E_{il})_{il}$ und somit für $(C_i)_i$ und $(D_i)_i$. Wir haben das Problem also auf die (zu zeigende) Aussage $\mu(C_i) = \sum_{l=1}^k \mu(E_{il})$ für einen Quader C_i reduziert. Wir verfeinern die Zerlegung weiter, indem wir wie folgt eine Zerlegung von C_1^i aus E_{il} konstruieren: Sei E_{il} $E_1^{il} \times E_2^{il}$ und $F_1^{ik} = \{\bigcap_{j=1}^k E_1^{il_j} | 1 \leq l_1 < \dots < l_k \leq k \}$ die Menge aller Schnitte von kverschiedenen Mengen. Sei weiter $F_1^{im}:=\{\bigcap_{j=1}^m E_1^{il_j}\setminus \left(E^{il_j}\cap \bigcup_{s=m+1}^k \bigcup_{F\in F_1^{is}} F\right)|1\leq 1\}$ $l_1 < \cdots < l_m \le k$, $1 \le m \le k-1$, und $\{F_1^{i1}, \ldots, F_1^{ir_1}\} := \{F \subset C^i \mid \exists 1 \le j \le k : F \in F_1^{ij}\}$, dann ist $(F_1^{il})_l$ eine disjunkte Zerlegung von C^i . Trotz dieser sehr te chnischen Konstruktion ist die Idee, die uns zu dieser Zerlegung geführt hat, einfach: Wie wir später sehen werden, ist es wünschenswert, dass wir unseren Quader C_i in ein Raster zerlegen können, d. h. wir möchten disjunkte Zerlegungen $(F_1^{il})_l$ und $(F_2^{il})_l$ der beiden Seiten C_1^i und C_2^i finden, so dass die Paare $(F_1^{il} \times F_2^{ik})_{lk}$ den Quader C_i disjunkt überdecken. Wir entfernen also zunächst alle Schnitte von k Mengen und dann vom verbleibenden "Rest" die Schnitte von k-1 Mengen, usw. Da wir alle bereits konstruierten Mengen im jeweils nächsten Schritt abgezogen haben, ist die Zerlegung nach Konstruktion disjunkt. Als Durchschnitt von Teilmengen von E_1^{il} (resp. E_2^{il}) ist die Zerlegung $(F_1^{il} \times F_2^{ik})_{lk}^4$ bereits eine Verfeinerung von E^{il} . Zur Vereinfachung setzen wir $C := C_i =: C_1 \times C_2$ und $(F_1^l \times F_2^k)_{lk} := (F_1^{il} \times F_2^{ik})_{lk}$.

Die abschließende Rechnung

$$\mu(C) = \mu_1(C_1)\mu_2(C_2) = \left(\sum_{l=1}^{r_1} \mu(F_1^l)\right) \left(\sum_{l=1}^{r_2} \mu(F_2^l)\right)$$
$$= \sum_{l=1}^{r_1} \sum_{j=1}^{r_2} \mu(F_1^l)\mu(F_2^j) = \sum_{l=1}^{r_1} \sum_{j=1}^{r_2} \mu(F_1^l \times F_2^j)$$

liefert das Ergebnis.

Behauptung. μ ist ein Inhalt.

Beweis. $\mu(\emptyset) = \mu_1(\emptyset)\mu_2(\emptyset) = 0$ ist klar. Endliche Additivität folgt aus der Definition von μ .

Behauptung. μ ist der einzige Inhalt mit $\mu(A_1 \times A_2) = \mu_1(A_1)\mu_2(A_2)$ für $A_1 \in \mathcal{A}_1$ und $A_2 \in \mathcal{A}_2$.

Beweis. μ ist auf Quadern bereits festgelegt und jedes Element in \mathcal{A} lässt sich nach Teil (a) disjunkt in Quader zerlegen, d. h. wegen endlicher Additivität ist μ eindeutig.

 $^{^4(}F_2^{il})$ ist die bereits erwähnte entsprechende Zerlegung von ${\cal C}_2$