Übungen zur Analysis 3

2.1ε (σ -)Subadditivität.

(a) Es sei μ ein Inhalt auf einer Mengenalgebra \mathcal{A} . Zeigen Sie: Für $n \in \mathbb{N}$ und $A_1, \ldots, A_n \in \mathcal{A}$ gilt

$$\mu\left(\bigcup_{j=1}^{n} A_j\right) \le \sum_{j=1}^{n} \mu(A_j).$$

(b) Nun sei μ sogar ein Maß auf einer σ -Algebra \mathcal{A} . Zeigen Sie: Ist $(A_n)_{n\in\mathbb{N}}$ eine Folge mit Werten in \mathcal{A} , so gilt

$$\mu\left(\bigcup_{n\in\mathbb{N}}A_n\right)\leq\sum_{n\in\mathbb{N}}\mu(A_n).$$

- **2.2** Es sei $\Omega = \mathbb{R}$. Zeigen Sie, dass folgende Mengensysteme $\mathcal{E}_1, \mathcal{E}_2, \mathcal{E}_3, \mathcal{E}_4$ alle die gleiche σ -Algebra \mathcal{A} über \mathbb{R} erzeugen:
 - (a) $\mathcal{E}_1 = \{ |a, b| | a, b \in \mathbb{R} \cup \{\pm \infty\}, a < b \}$ sei die Menge der offenen Intervalle.
 - (b) $\mathcal{E}_2 = \{[a,b] | a, b \in \mathbb{R}, a \leq b\}$ sei die Menge der kompakten Intervalle.
 - (c) $\mathcal{E}_3 = \{]-\infty, a] | a \in \mathbb{R} \}$ sei die Menge der linksseitig unendlichen abgeschlossenen Intervalle.
 - (d) $\mathcal{E}_4 = \{ |a, b| \cap \mathbb{R} | a, b \in \mathbb{R} \cup \{ \pm \infty \} \}$
- **2.3** Zeigen Sie, dass die folgenden Teilmengen von \mathbb{R} Borelmengen sind:
 - (a) \mathbb{Q} und $\mathbb{R} \setminus \mathbb{Q}$,
 - (b) $\bigcup_{n \in \mathbb{N}} \left[\frac{1}{n^2}, \frac{1}{n^2 + 1} \right]$,
 - (c) die Menge A aller Zahlen $x \in [0,1[$, in deren Dezimaldarstellung eine Ziffer "3" vorkommt,
 - (d) die Menge B aller Zahlen $x \in [0, 1[$, in deren Dezimaldarstellung unendlich oft die Ziffer "3", aber nur endlich oft die Ziffer "4" vorkommt.

2.4 Klassifizierung von σ -Algebren auf abzählbaren Mengen. (Fortsetzung von Aufgabe 1.3)

- (a) Es sei Ω eine endliche oder abzählbar unendliche Menge, $\Sigma(\Omega)$ das Mengensystem aller Σ -Algebren darüber, und $\Pi(\Omega)$ das Mengensystem aller Partitionen darüber. Beweisen Sie, dass die Abbildung part : $\Sigma(\Omega) \to \Pi(\Omega)$, $\mathcal{A} \mapsto \operatorname{part}(\mathcal{A})$ aus Übung 1.6 und die Abbildung $\sigma : \Pi(\Omega) \to \Sigma(\Omega)$, $\mathcal{E} \mapsto \sigma(\mathcal{E})$ zueinander inverse Bijektionen sind.
- (b) Zählen Sie alle σ -Algebren auf der Menge $\Omega = \{1, 2, 3, 4\}$ auf.

- 2.5* Produkte von Mengenalgebren und Inhalten. Für j=1,2 seien Ω_j eine Menge, \mathcal{A}_j eine Mengenalgebra darüber und $\mu_j: \mathcal{A}_j \to [0,\infty]$ ein Inhalt. Weiter sei $\Omega = \Omega_1 \times \Omega_2$ und \mathcal{A} die Menge aller endlichen Vereinigungen von Rechtecken $A_1 \times A_2$ mit Seiten $A_1 \in \mathcal{A}_1$ und $A_2 \in \mathcal{A}_2$. Zeigen Sie:
 - (a) Jedes Element von \mathcal{A} kann als endliche Vereinigung von paarweise disjunkten Rechtecken $A_1 \times A_2$ mit Seiten $A_1 \in \mathcal{A}_1$ und $A_2 \in \mathcal{A}_2$ dargestellt werden.
 - (b) \mathcal{A} ist eine Mengenalgebra über Ω .
 - (c) Es gibt genau einen Inhalt $\mu: \mathcal{A} \to [0, \infty]$ mit $\mu(A_1 \times A_2) = \mu_1(A_1)\mu_2(A_2)$ für $A_1 \in \mathcal{A}_1$ und $A_2 \in \mathcal{A}_2$.

Insbesondere gibt es für alle $n \in \mathbb{N}$ genau einen Inhalt μ_n auf der Mengenalgebra aller endlichen Vereinigungen von Quadern $\prod_{j=1}^n [a_j, b_j]$, $a_j \leq b_j$ in $[-\infty, \infty]$, mit $\mu(\prod_{j=1}^n [a_j, b_j]) = \prod_{j=1}^n (b_j - a_j)$.

Abgabe: Bis spätestens Montag, den 28.10.2013, 11:00 Uhr, durch Einwurf in den entsprechenden Übungskasten.

Präsenzaufgaben zu Blatt 2

- **T2.1** Es sei $\Omega = \{1, 2, 3, 4\}$ und $\mathcal{E} = \{\{1, 2\}, \{1, 3\}\}$. Beweisen Sie $\sigma(\mathcal{E}, \Omega) = \mathcal{P}(\Omega)$. Geben Sie auch alle Elemente von $\sigma(\{\{1, 2\}\}, \Omega)$ an.
- **T2.2 Vergleich erzeugter** σ -Algebren. Es seien Ω eine Menge, \mathcal{E} und \mathcal{E}' Mengensysteme über Ω . Beweisen Sie:
 - (a) Aus $\mathcal{E} \subseteq \mathcal{E}'$ folgt $\sigma(\mathcal{E}) \subseteq \sigma(\mathcal{E}')$.
 - (b) Ist $\mathcal{E} \subseteq \sigma(\mathcal{E}')$ und $\mathcal{E}' \subseteq \sigma(\mathcal{E})$, so folgt $\sigma(\mathcal{E}) = \sigma(\mathcal{E}')$.
- **T2.3** Es sei (Ω, \mathcal{T}) ein topologischer Raum, $\Omega' \in \sigma(\mathcal{T}, \Omega)$ und \mathcal{T}' die Teilraumtopologie auf Ω' bezüglich \mathcal{T} . Zeigen Sie

$$\mathcal{B}(\Omega', \mathcal{T}') = \{ A \in \mathcal{B}(\Omega, \mathcal{T}) | A \subseteq \Omega' \}.$$

Aufgaben mit einem "T" werden üblicherweise in den Tutorien als Präsenzaufgaben gestellt. Entsprechend sind diese Aufgaben **nicht** abzugeben, sie werden nicht korrigiert und es werden keine Musterlösungen dazu veröffentlicht. Aufgaben mit einem " ε " haben eine kurze Lösung. Aufgaben mit einem " \star " sind oft schwierig und/oder zeitaufwendig.