Übungen zur Analysis 2

3.1 Abstraktion des Beweises der Minkowskiungleichung. Es seien V ein \mathbb{K} -Vektorraum und $\|\cdot\|:V\to\mathbb{R}$ eine Abbildung. $V'=\operatorname{Hom}_{\mathbb{K}}(V,\mathbb{K})$ bezeichne den Dualraum von V, also die Menge aller linearen Abbildungen von V nach \mathbb{K} (synonym: Linearformen auf V). Weiter sei $\mathcal{B}\subseteq V'$ eine nichtleere Menge von Linearformen, und es gelte für alle $x\in V$:

$$||x|| = \sup\{|H(x)| \mid H \in \mathcal{B}\}.$$

Beweisen Sie, dass $\|\cdot\|$ eine Halbnorm auf V ist.

- **3.2** Es seien $1 \le p < \infty$ und $-\infty < a < b < \infty$. Beweisen Sie die Dreiecksungleichung für $\|\cdot\|_p : C([a,b],\mathbb{K}) \to \mathbb{R}$.
- **3.3** Geben Sie (mit Beweis) eine Metrik auf $\mathbb{C} \cup \{\infty\}$ an, die die aus der Analysis 1 bekannte Topologie auf $\mathbb{C} \cup \{\infty\}$ erzeugt.
- **3.4** Es sei (M,d) ein halbmetrischer Raum und $a \in \mathbb{R}^+$. Zeigen Sie, dass durch

$$d_1: M \times M \to \mathbb{R}, \quad d_1(x,y) = \frac{d(x,y)}{a+d(x,y)}$$

und durch

$$d_2: M \times M \to \mathbb{R}, \quad d_2(x, y) = \min\{d(x, y), a\}$$

Halbmetriken auf M gegeben werden, die die gleiche Topologie wie d erzeugen.

- **3.5** Es sei (M, \mathcal{T}) ein topologischer Raum und $N \subseteq M$. Zeigen Sie:
 - (a) $N^{\circ} \subseteq N \subseteq \overline{N}$,
 - (b) $\partial N = \overline{N} \setminus N^{\circ}$,
 - (c) $M \setminus N^{\circ} = \overline{M \setminus N}$.
- **3.6** Es sei (M, \mathcal{T}) ein topologischer Raum.
 - (a) Zeigen Sie, dass $x \in M$ genau dann ein Berührpunkt von $N \subseteq M$ ist, wenn jede Umgebung von x die Menge N trifft: $U \cap N \neq \emptyset$.
 - (b) Zeigen Sie, dass $N \subseteq M$ genau dann dicht in M ist, wenn für jede nichtleere offene Menge $U \subseteq M$ gilt: $U \cap N \neq \emptyset$.
- **3.7** Studieren Sie die Fälle p=1 und $p=\infty$ im Beweis von Korollar 1.22 im Skript.

Abgabe: Bis spätestens Montag, den 13.05.2013, 11:00 Uhr, durch Einwurf in den entsprechenden Übungskasten.