LUDWIG-MAXIMILIANSUNIVERSITAT MÜNCHEN

Mathematical Gauge Theory I

Sheet 12

Exercise 1. Let V be an oriented 4-dimensional \mathbb{R}-vector space with a scalar product.
a) Given an oriented orthonormal basis $\alpha_{1}, \ldots, \alpha_{4} \in V$, write out explicit orthonormal bases for $\Lambda_{+}^{2} V$ and $\Lambda_{-}^{2} V$, derived from the α_{i}.
b) Given an arbitrary vector space W and an $\alpha \neq 0 \in V$, show the linear map

$$
\begin{aligned}
& \pi_{-} \circ \alpha \otimes: V \otimes W \longrightarrow\left(\Lambda_{-} V\right) \otimes W \\
\beta \otimes w & \longmapsto(\alpha \wedge \beta)_{-} \otimes w
\end{aligned}
$$

has kernel consisting of elements of the form $\alpha \otimes w \in V \otimes W$.
c) Show that the map in b) is surjective

Remark: This completes the proof that the symbol sequence of the twisted half de Rham complex of an oriented Riemannian 4-manifold is exact.

Exercise 2. Let $Q: \mathbb{Z}^{r} \times \mathbb{Z}^{r} \longrightarrow \mathbb{Z}$ be a positive definite symmetric bilinear form. Assume Q is unimodular in the sense that $\operatorname{det} Q= \pm 1$. Let m be one half the number of solutions to the equation

$$
Q(\alpha, \alpha)=1
$$

a) Prove that $m \leq r$, with equality if, and only if, Q can be diagonalized over \mathbb{Z}.
b) Prove that the symmetric bilinear form corresponding to the quadratic form

$$
Q_{E_{8}}\left(x_{1}, \ldots, x_{8}\right):=2 \sum_{i=1, \ldots, 8} x_{i}^{2}-2 \sum_{i=1, \ldots, 6} x_{i} x_{i+1}-2 x_{5} x_{8}
$$

is positive definite and unimodular, but not diagonalizable over \mathbb{Z}.

Exercise 3. For a closed oriented 4-manifold X, denote by Q_{X} its intersection form.
a) Compute $Q_{S^{2} \times S^{2}}$ and $Q_{\mathbb{C P}^{2}}$.
b) Let $P(x, y):=x^{2}-y^{2}$. Show that $Q_{S^{2} \times S^{2}}$ is equivalent to P over the reals, but not over the integers.
Remark for those who know about connected sums: One may see check $P=Q_{\mathbb{C P}^{2} \# \overline{\mathbb{C P}^{2}}}$. So even though $S^{2} \times S^{2}$ and $\mathbb{C P}^{2} \# \overline{\mathbb{C P}^{2}}$ have the same Betti-numbers, they are distinguished by their intersection form.

Hand in: during the exercise classes.

