

LUDWIG-MAXIMILIANS-UNIVERSITÄT MÜNCHEN



Fall term 2019

Prof. D. Kotschick Dr. J. Stelzig G. Placini

## Mathematical Gauge Theory I

Sheet 11

**Exercise 1.** Let  $\nabla$  be a covariant derivative on  $E \to B$  and  $\overline{\nabla}$  its extension on End*E* defined by

$$(\overline{\nabla}_X \varphi)s = \nabla_X(\varphi(s)) - \varphi(\nabla_X s)$$

for all  $X \in TB, s \in \Gamma(E), \varphi \in \Gamma(\text{End}E)$ .

- a) Prove that  $\overline{\nabla}$  is indeed a covariant derivative on End*E*.
- b) Prove that

$$F^{\overline{\nabla}}(X,Y)\varphi = [F^{\nabla}(X,Y),\varphi]$$

where the right-hand side is the commutator of endomorphism

$$[\psi,\varphi] = \psi \circ \varphi - \varphi \circ \psi.$$

**Exercise 2.** Let  $P \to B$  be a principal *G*-bundle.

- a) Prove that if P admits a reduction to  $S^1 \subset G$ , then P admits a Yang-Mills connection for any Riemannian metric on B.
- b) If B is 4-dimensional, is the same statement true for self-dual or anti-self-dual Yang-Mills connections?

**Exercise 3.** Let  $P \to B$  be a principal *G*-bundle with gauge group  $\mathcal{G}$  and space of connections  $\mathcal{C}$ . Determine all possible stabilizers  $\operatorname{Stab}(\omega) \subset \mathcal{G}$  for the  $\mathcal{G}$ -action on  $\mathcal{C}$  in the cases  $G = \operatorname{SU}(2)$  and  $G = \operatorname{SO}(3)$ .

**Exercise 4.** Consider the principal SU(2)-bundle  $S^7 \to S^4$  defined in an analogous way to the Hopf bundle  $S^3 \to S^2$  when replacing the complex number with quaternions.

- a) In analogy with Exercise 4 in Sheet 3 define a connection 1-form  $A \in \Omega^1(S^7, \mathfrak{su}(2))$ .
- b) Prove that A satisfies the Yang-Mills equation for the standard round Riemannian metric on  $S^4$ .

Hand in: during the exercise classes.