LUDWIG-

Mathematical Gauge Theory I

Sheet 11

Exercise 1. Let ∇ be a covariant derivative on $E \rightarrow B$ and $\bar{\nabla}$ its extension on End E defined by

$$
\left(\bar{\nabla}_{X} \varphi\right) s=\nabla_{X}(\varphi(s))-\varphi\left(\nabla_{X} s\right)
$$

for all $X \in T B, s \in \Gamma(E), \varphi \in \Gamma(\operatorname{End} E)$.
a) Prove that $\bar{\nabla}$ is indeed a covariant derivative on $\operatorname{End} E$.
b) Prove that

$$
F^{\bar{\nabla}}(X, Y) \varphi=\left[F^{\nabla}(X, Y), \varphi\right]
$$

where the right-hand side is the commutator of endomorphism

$$
[\psi, \varphi]=\psi \circ \varphi-\varphi \circ \psi .
$$

Exercise 2. Let $P \rightarrow B$ be a principal G-bundle.
a) Prove that if P admits a reduction to $S^{1} \subset G$, then P admits a Yang-Mills connection for any Riemannian metric on B.
b) If B is 4 -dimensional, is the same statement true for self-dual or anti-self-dual Yang-Mills connections?

Exercise 3. Let $P \rightarrow B$ be a principal G-bundle with gauge group \mathcal{G} and space of connections \mathcal{C}. Determine all possible stabilizers $\operatorname{Stab}(\omega) \subset \mathcal{G}$ for the \mathcal{G}-action on \mathcal{C} in the cases $G=\operatorname{SU}(2)$ and $G=\mathrm{SO}(3)$.

Exercise 4. Consider the principal $\mathrm{SU}(2)$-bundle $S^{7} \rightarrow S^{4}$ defined in an analogous way to the Hopf bundle $S^{3} \rightarrow S^{2}$ when replacing the complex number with quaternions.
a) In analogy with Exercise 4 in Sheet 3 define a connection 1-form $A \in \Omega^{1}\left(S^{7}, \mathfrak{s u}(2)\right)$.
b) Prove that A satisfies the Yang-Mills equation for the standard round Riemannian metric on S^{4}.

