

LUDWIG-MAXIMILIANS-UNIVERSITÄT MÜNCHEN

MATHEMATISCHES INSTITUT

Prof. D. Kotschick Dr. J. Stelzig G. Placini

Mathematical Gauge Theory I

Sheet 10

Exercise 1. Let (M, g) be an *n*-dimensional oriented Riemannian manifold and * the Hodge star operator.

1. Prove that

$$**: \Omega^k(M) \longrightarrow \Omega^k(M)$$

is given by

$$** = (-1)^{k(n-k)}$$

2. Determine the even dimensions n = 2k where ** = 1 on $\Omega^k(M)$. In these dimensions we can define self-dual and anti-self-dual k-forms ω , satisfying $*\omega = \omega$ and $*\omega = -\omega$, respectively.

Exercise 2. Let (M, g) be a closed (compact without boundary) *n*-dimensional oriented Riemannian manifold. The Laplace operator on *k*-forms is defined by

$$\Delta = dd^* + d^*d : \Omega^k(M) \longrightarrow \Omega^k(M)$$

where d^* is the formal adjoint of d. A form ω is called harmonic if $\Delta \omega = 0$. Prove that

 ω is harmonic $\iff d\omega = 0 = d^*\omega \iff *\omega$ is harmonic.

Exercise 3. Let (M,g) be a Riemannian 4-manifold with principal bundle $P \longrightarrow M$. Prove that the Yang-Mills functional is invariant under conformal change of the metric, i.e. when replacing g by g' with

$$g' = e^{2\lambda}g,$$

where $\lambda \in C^{\infty}(M)$ is an arbitrary smooth function on M.

Exercise 4.

- 1. Prove that the connection A on the Hopf bundle $S^3 \longrightarrow S^2$, introduced in Ex. 4, sheet 3, satisfies the Yang-Mills equation if S^2 has the standard round Riemannian metric.
- 2. Prove that the Yang-Mills moduli space for the Hopf bundle $S^3 \longrightarrow S^2$ over the round sphere S^2 consists of a single point.

Hand in: during the exercise classes.