

LUDWIG-MAXIMILIANS-UNIVERSITÄT MÜNCHEN

Fall term 2019

Prof. D. Kotschick Dr. J. Stelzig G. Placini

Mathematical Gauge Theory I

Sheet 7

Exercise 1. Let *E* be a vector bundle with covariant derivative ∇ . For two local trivializations differing by a gauge transformation *g* prove that the two curvature matrices are related by $\Omega' = g \Omega g^{-1}$.

Exercise 2. Let E be a vector bundle with covariant derivative ∇ and F^{∇} its curvature. Prove that

$$F^{\nabla}(X,Y)s = \nabla_X \nabla_Y s - \nabla_Y \nabla_X s - \nabla_{[X,Y]}s.$$

[Hint: You may use the special case proved during the lecture.]

Exercise 3. Let $P \to B$ be a principal *G*-bundle and $\varphi \colon G \to H$ a homomorphism between Lie groups. Denote by P_{φ} the associated principal *H*-bundle. Show that for every connection 1-form $\omega \in \Omega^1(P, \mathfrak{g})$ there exists a unique connection 1-form $\omega' \in \Omega^1(P_{\varphi}, \mathfrak{h})$ such that

$$f^*\omega' = \varphi_* \circ \omega$$

where $f: P \to P_{\varphi}$ is defined by f(p) = [(p, e)]. [Hint: Use Exercise 1 from Sheet 3.]

(please turn)

Exercise 4. Let G and $\pi: \widetilde{B} \to B$ be as in Sheet 5, Exercise 2. Denote by $q: P_{\rho} \to B$ the principal G-bundle associated to the universal covering by $\rho: \pi_1(B) \to G$. Define the map $f: \widetilde{B} \to P_{\rho}$ by f(p) = [(p, e)] as in Exercise 3.

- a) Use the previous exercise to show that there is a unique flat connection 1-form $\omega_{\rho} \in \Omega^{1}(P_{\rho}, \mathfrak{g})$ such that $f^{*}\omega_{\rho} = 0$.
- b) Let $q_P \colon P \to B$ be a principal *G*-bundle equipped with a connection 1-form ω_P and $f_1, f_2 \colon \widetilde{B} \to P$ two maps such that $q_P \circ f_i = \pi$ and $f_i^* \omega_P = 0$. Show that there exists a unique $g \in G$ such that $f_2 = f_1 g$.
- c) Let $q_P \colon P \to B$ be a principal *G*-bundle equipped with a connection 1-form ω_P and $f \colon \widetilde{B} \to P$ a map satisfying $q_P \circ f = \pi$ and $f^* \omega_P = 0$. Show that there exists a homomorphism $\rho_f \colon \pi_1(B) \to G$ with $f \circ \gamma = f \rho_f(\gamma)^{-1}$ for all $\gamma \in \pi_1(B)$ such that the map

$$\widetilde{B} \times G \longrightarrow P$$

 $(p,g) \mapsto f(p)g$

induces an isomorphism $\phi: P_{\rho_f} \to P$ with $\phi^* \omega_P = \omega_{\rho_f}$.

Hand in: during the exercise classes.