

LUDWIG-MAXIMILIANS-UNIVERSITÄT MÜNCHEN

Fall term 2019

Prof. D. Kotschick Dr. J. Stelzig G. Placini

Mathematical Gauge Theory I

Sheet 6

Exercise 1. Let $\pi: P \to B$ be a principal *G*-bundle and $E = P \times_{\rho} V$ an associated vector bundle. Fix a connection ω on P and let ∇ be the induced connection on E. Using the definition of ∇ show that

$$\nabla_X(fs) = f\nabla_X s + (\pounds_X f)s$$

for any $f \in C^{\infty}(B)$, $s \in \Gamma(E)$ and $X \in \mathfrak{X}(B)$.

Exercise 2. Let $\pi: P \to B$ be a principal *G*-bundle where the Lie group *G* is abelian. Denote by $C^{\infty}(B,G)$ the group of smooth maps from *B* to *G* with multiplication given by pointwise multiplication and by $C^{\infty}(P,G)^G$ be the group $\{f: P \to G | f(pg) = g^{-1}f(p)g\}$. Show that the following map is a group isomorphism

$$C^{\infty}(B,G) \to C^{\infty}(P,G)^G$$
$$\sigma \mapsto f_{\sigma} = \sigma \circ \pi.$$

Exercise 3. Let $\pi: P \to B$ be a principal *G*-bundle and $E = P \times_G F$ be an associated fibre bundle. Recall that a map $f: M \to B$ defines a pullback bundle $f^*P \to M$, cf. Exercise 1 from Sheet 2.

- a) Show that the pullback principal G-bundle $\pi^* P \to P$ is trivial.
- b) Show that E is trivial if P is trivial.
- c) Show that the pullback bundle $\pi^* E \to P$ is always trivial.

Exercise 4. Let $\pi: P \to B$ be a principal *G*-bundle and $\omega \in \Omega^1(P, \mathfrak{g})$ a connection 1-form on *P*. Suppose that $\sigma \in \mathcal{G}$ is a bundle automorphism, i.e. a gauge transformation. Prove that $\sigma^* \omega$ is a connection 1-form on *P* which satisfies

$$\sigma^*\omega = \operatorname{Ad}(f^{-1})\omega + f^*\theta$$

where f is the unique function such that $\sigma(p) = pf(p)$ and θ is the tautological 1-form on G.

Hand in: during the exercise classes.