

LUDWIG-MAXIMILIANS-UNIVERSITÄT MÜNCHEN

Fall term 2019

MATHEMATISCHES INSTITUT

Prof. D. Kotschick Dr. J. Stelzig G. Placini

Mathematical Gauge Theory I

Sheet 5

Exercise 1.

Let G be a Lie group and $Ad: G \to GL(\mathfrak{g})$ its adjoint representation. Show that the differential of Ad at the identity element is given by

$$D_eAd: \mathfrak{g} \longrightarrow \operatorname{End}(\mathfrak{g})$$
$$X \mapsto (Y \mapsto [X, Y])$$

Exercise 2. Let $\widetilde{B} \to B$ be the universal covering space of a smooth connected manifold B. Regard \widetilde{B} as a principal bundle with fibre the discrete Lie group $\pi_1(B)$ acting on the right. Let G be a Lie group and consider the bundle $\widetilde{B} \times_{\pi_1(B)} G$ associated to \widetilde{B} by $\rho: \pi_1(B) \to G$ with $\pi_1(B)$ acting on G by ρ composed with left multiplication.

- a) Show that $\widetilde{B} \times_{\pi_1(B)} G$ is a principal G-bundle over B which admits a flat connection.
- b) Show that for any representation $\rho \colon \pi_1(B) \to GL(n,\mathbb{R})$ the associated vector bundle $\widetilde{B} \times_{\rho} \mathbb{R}^n$ admits an integrable connection, i.e. an integrable horizontal subbundle $H \subset T(\widetilde{B} \times_{\rho} \mathbb{R}^n)$.

Exercise 3. Let $\pi: E \to B$ be a rank k vector bundle with fiber V over a smooth manifold B.

- a) Prove that the set of bases, or frames, in the fibres of E naturally forms a principal GL(V)-bundle over B (the **frame bundle** Fr(E)).
- b) Show that the vector bundle $Fr(E) \times_{\rho} V$ associated to Fr(E) by the tautological representation $\rho: GL(k, \mathbb{R}) \to GL(V)$ is isomorphic to E.

Exercise 4. Let $\pi: P \to B$ be a principal *G*-bundle.

- a) Consider two representations $\rho, \rho' \colon G \to GL(n, \mathbb{R})$. Show that the associated vector bundles $P \times_{\rho} \mathbb{R}^n$ and $P \times'_{\rho} \mathbb{R}^n$ are isomorphic if and only if there exists a smooth map $\phi \colon P \to GL(n, \mathbb{R})$ satisfying $\rho'_q \phi_{pg} = \phi_p \rho_g$.
- b) Analogously prove that, for two smooth actions $\mu: G \times F \to F$ and $\mu': G \times F \to F$, the associated fibre bundles $P \times_{G,\mu} F$ and $P \times_{G,\mu'} F$ are isomorphic if and only if there exists $\phi: P \to \text{Diff}(F)$ satisfying $\mu'_q \phi_{pg} = \phi_p \mu_g$.

Hand in: during the exercise classes.