Mathematical Gauge Theory I

Sheet 3

Exercise 1. Let $\pi: P \rightarrow B$ be a principal G-bundle, $\left\{U_{i}\right\}$ an open cover of B by trivializing sets and $\omega_{i} 1$-forms on U_{i} with values in \mathfrak{g}. Show that if

$$
\omega_{j}=\operatorname{Ad}\left(\psi_{i j}^{-1}\right) \omega_{i}+\theta_{i j} \text { on } U_{i} \cap U_{j}
$$

then there is a unique connection 1-form ω on P such that $\omega_{i}=s_{i}^{*} \omega$.
[Remark: Here $\theta_{i j}, \psi_{i j}$ and s_{i} are defined as in the lectures.]

Exercise 2. Let $\pi: P \rightarrow B$ be a principal G-bundle and fix a connection $H \subset T P$. Consider vector fields $V, W \in \mathfrak{X}(B)$ and let $\widetilde{V}, \widetilde{W}$ be their horizontal lifts.
a) Show that $\widetilde{V+W}=\widetilde{V}+\widetilde{W}$.
b) Show that $\widetilde{f V}=(f \circ \pi) \widetilde{V}$ for $f \in C^{\infty}(B)$.
c) Show that $\widetilde{[V, W]}=[\widetilde{V}, \widetilde{W}]_{H}$.

Exercise 3. Let G be a Lie group and $\mathfrak{g}=T_{e} G$ its Lie algebra. Consider a continuous curve Y_{t} in $T_{e} G$ with $t \in[0,1]$. Show that there exist a unique curve a_{t} in G of class C^{1} such that $a_{0}=e$ and $\dot{a}_{t} a_{t}^{-1}=Y_{t}$ for all $t \in[0,1]$.

Exercise 4. Consider S^{3} as the set of unit vectors in \mathbb{C}^{2}. By abuse of notation let $\pi: S^{3} \rightarrow S^{2}=\mathbb{C} P^{1}$ be the restriction of the projection $\pi: \mathbb{C}^{2} \backslash\{0\} \rightarrow \mathbb{C} P^{1}$ to S^{3}.
a) Show that $\pi: S^{3} \rightarrow S^{2}$ is a principal S^{1}-bundle (called the Hopf bundle).
b) Consider S^{1} as the unit circle in \mathbb{C} with Lie algebra $i \mathbb{R}$ and exponential map $\exp (Y)=e^{i y}$ where $Y=i y \in i \mathbb{R}$. Define 1-forms on S^{3} with values in \mathbb{C} by

$$
\alpha_{j}\left(X_{0}, X_{1}\right)=X_{j}, \quad \bar{\alpha}_{j}\left(X_{0}, X_{1}\right)=\bar{X}_{j}
$$

by using the identification

$$
T_{\left(z_{0}, z_{1}\right)} S^{3}=\left\{\left(X_{0}, X_{1}\right) \in \mathbb{C}^{2} \mid \mathcal{R}\left(\bar{z}_{0} X_{0}+\bar{z}_{1} X_{1}\right)=0\right\}
$$

where $\mathcal{R}(\beta)$ denotes the real part of $\beta \in \mathbb{C}$. Show that the 1 -form on S^{3}

$$
A_{\left(z_{0}, z_{1}\right)}=\frac{1}{2}\left(\bar{z}_{0} \alpha_{0}-z_{0} \bar{\alpha}_{0}+\bar{z}_{1} \alpha_{1}-z_{1} \bar{\alpha}_{1}\right)
$$

has values in $i \mathbb{R}$ and is a connection 1 -form for the Hopf bundle.

