

LUDWIG-MAXIMILIANS-UNIVERSITÄT MÜNCHEN

Fall term 2019

Prof. D

Prof. D. Kotschick Dr. J. Stelzig G. Placini

Mathematical Gauge Theory I

Sheet 2

Exercise 1. Suppose $\pi: P \to M$ is a principal *G*-bundle and let $f: N \to M$ be a smooth map. Define the **pullback** of *P* under *f* to be the space

$$f^*P: = \{(x, p) \in N \times P | f(x) = \pi(p)\}$$

a) Show that the map

$$\pi' \colon f^* P \to N$$
$$(x, p) \mapsto x$$

defines a principal G-bundle.

- b) Let $W \subset M$ be an embedded submanifold. Show that the restriction $\pi: \pi^{-1}(W) \to W$ is a well defined principal *G*-bundle.
- c) Prove that the bundle f^*P is trivial if f is a constant map.
- d) Prove that the bundle f^*P is trivial if P is trivial.

Exercise 2. Define the Möbious strip M to be the submanifold

$$M = \left\{ (e^{i\theta}, re^{i\theta/2}) \in S^1 \times \mathbb{C} | \theta \in [0, 2\pi], r \in [-1, 1] \right\}$$

and let $\pi \colon M \to S^1$ be the projection on the first factor.

- a) Show that $\pi: M \to S^1$ is a fibre bundle with fibre [-1, 1].
- b) Prove that the boundary ∂M is connected and that the bundle $\pi: M \to S^1$ is not trivial.
- c) Prove that the image of any smooth section $s: S^1 \to M$ intersects the zero section $e^{i\theta} \mapsto (e^{i\theta}, 0)$.

(please turn)

Exercise 3. Let $\pi: M \to S^1$ be the fibre bundle from Exercise 2 and consider the maps

$$f_n \colon S^1 \to S^1$$
$$e^{i\theta} \mapsto e^{in\theta}$$

for $n \in \mathbb{Z}$.

a) Show that the pull-back bundle f_n^*M is isomorphic to the bundle $\pi_n \colon M_n \to S^1$ defined by

$$M_n = \{ (e^{i\theta}, re^{in\theta/2}) \in S^1 \times \mathbb{C} | \theta \in [0, 2\pi], r \in [-1, 1] \},\$$

where π_n is the projection on the first factor.

b) For which $n \in \mathbb{Z}$ is the pullback bundle f_n^*M trivial?

Exercise 4.

- a) Let $\pi: E \to M$ be a fiber bundle such that the base M and the fibre F are connected. Show that E is connected.
- b) Show that the SO(n) principal bundle $\pi: SO(n+1) \to S^n$ is the bundle of oriented orthonormal frames of the tangent bundle TS^n .
- b) Use part a) to show that the group SO(n) is connected for all n.

Hand in: during the exercise classes.