

LUDWIG-MAXIMILIANS-UNIVERSITÄT MÜNCHEN

Fall term 2019

Prof. D. Kotschick Dr. J. Stelzig G. Placini

Mathematical Gauge Theory I

Sheet 1

Exercise 1. Let G be a Lie group. Show that the Lie bracket [X, Y] of two left-invariant vector fields X, Y is a left-invariant vector field.

Exercise 2. Consider the 3-dimensional sphere S^3 as the set of unit quaternions, i.e.

 $S^{3} = \{a + ib + jc + kd \in \mathbb{H} | a^{2} + b^{2} + c^{2} + d^{2} = 1\}.$

Show that S^3 is a Lie group.

Exercise 3. Consider the Lie group $SL(2,\mathbb{R})$ and its Lie algebra $\mathfrak{sl}(2,\mathbb{R})$.

- a) Compute $\operatorname{tr}(\exp X)$ for $X \in \mathfrak{sl}(2,\mathbb{R})$.
- b) Show that the exponential map $\exp: \mathfrak{sl}(2,\mathbb{R}) \to SL(2,\mathbb{R})$ is not surjective.

Exercise 4. Let G be a connected Lie group.

- a) Show that if $H \subset G$ is an open subgroup then H = G.
- b) Let $U \subset G$ an open neighbourhood of the identity e. Prove that the set $W = \bigcup_{n=1}^{\infty} U^n$ contains an open subgroup of G. Deduce that W = G.
- c) Show that every group element $g \in G$ is of the form $g = \exp X_1 \cdot \exp X_2 \cdots \exp X_n$ for finitely many vectors X_1, \ldots, X_n in the Lie algebra \mathfrak{g} of G.
- d) Let $\phi, \psi \colon G \to K$ be Lie group homomorphisms. Show that if $\phi_* = \psi_* \colon \mathfrak{g} \to \mathfrak{h}$ then $\phi = \psi$.

Hand in: during the exercise classes.