

LUDWIG-MAXIMILIANS-UNIVERSITÄT MÜNCHEN

Fall term 2018

Prof. D. Kotschick Dr. J. Stelzig G. Placini

## Topology I

Sheet 10

**Exercise 1.** Let X be the two-sphere with north and south pole identified. Equip this with the structure of a CW-complex and compute the fundamental group.

**Exercise 2.** Let (X, A) be a pair of spaces. Write

 $C(A) := A \times [0,1] / \sim$  where  $(a,1) \sim (a',1) \ \forall a,a' \in A$ 

for the cone over A and  $f: A \longrightarrow C(A)$  for the inclusion into  $A \times \{0\}$ .

- a) If (X, A) satisfies the homotopy extension property, show that  $X \cup_f C(A)$  is homotopy equivalent to X/A.
- b) Let X = [0,1] and  $A = \{0\} \cup \{\frac{1}{n} \mid n \in \mathbb{Z}_{>0}\}$ . Show that (X, A) does not satisfy the homotopy extension property.

**Exercise 3.** Consider the sequence of maps

 $\mathbb{R} \longrightarrow \mathbb{R}^2 \longrightarrow \mathbb{R}^3 \longrightarrow \dots$ 

where  $\mathbb{R}^i \longrightarrow \mathbb{R}^{i+1}$  is the inclusion  $(x_1, ..., x_n) \longmapsto (x_1, ..., x_i, 0)$  to the hyperplane  $\{x_{i+1} = 0\}$  and let  $\mathbb{R}^\infty$  be the union of all  $\mathbb{R}^i$ , equipped with the weak topology. Let  $S^\infty$  be the space defined as  $S^\infty = \{x \in \mathbb{R}^\infty | \sum_{n=1}^\infty x_n^2 = 1\}$  with the subspace topology.

a) Show that the map

$$H: S^{\infty} \times [0, 1] \longrightarrow S^{\infty}$$
$$(x_1, x_2, \ldots) \longmapsto \frac{((1-t)x_1, tx_1 + (1-t)x_2, tx_2 + (1-t)x_3, \ldots)}{N}$$

where N is the norm of the point at the numerator, is a well defined homotopy.

b) Show that the map

$$\widetilde{H}: \qquad A \times [0,1] \longrightarrow S^{\infty}$$
$$(0, x_2, x_3, \ldots) \longmapsto \frac{(t, (1-t)x_2, (1-t)x_3, \ldots)}{N}$$

where  $A = \{x \in S^{\infty} | x_1 = 0\}$ , defines a homotopy and conclude that  $S^{\infty}$  is contractible.

(please turn)

Exercise 4. This is a continuation of the previous exercise.

- a) Equip  $S^{\infty}$  with the structure of a CW-complex.
- b) Give a definition of  $\mathbb{R}P^{\infty}$ , s.t. there is a two-sheeted covering map  $S^{\infty} \longrightarrow \mathbb{R}P^{\infty}$ .
- c) Show that the spaces  $\mathbb{R}P^2$  and  $\mathbb{R}P^{\infty} \times S^2$  have the same homotopy groups.

**Remark** One can show that  $\mathbb{R}P^2$  and  $\mathbb{R}P^{\infty} \times S^2$  are not homotopy equivalent. Why is this not a contradiction to Whitehead's theorem?

Hand in: during the lecture on Tuesday, January 8th.