

LUDWIG-MAXIMILIANS-UNIVERSITÄT MÜNCHEN

Fall term 2018

Prof. D. Kotschick Dr. J. Stelzig G. Placini

Topology I

Sheet 8

Exercise 1. A section of a covering $p: X \longrightarrow Y$ is a continuous mapping $s: Y \longrightarrow X$ such that $p \circ s$ is the identity. Show that if a *G*-covering has a section, then the covering is trivial as a *G*-covering.

Exercise 2. Let Y be a connected topological space, $p: X \longrightarrow Y$ be a G-covering and φ_1, φ_2 be automorphisms of the G-covering $p: X \longrightarrow Y$. Show that if φ_1, φ_2 agree on one point, then $\varphi_1 = \varphi_2$.

Exercise 3. Let $m, n \in \mathbb{Z}_{>1}$ and $\mu_n := \{\zeta \in \mathbb{C} \mid \zeta^n = 1\}$ the group of *n*-th roots of unity. Construct an action of μ_n on S^{2m-1} such that the quotient has fundamental group μ_n . Deduce that every group G which is of the form $G = \mathbb{Z}^k \oplus \bigoplus_{i=1}^j \mathbb{Z}/r_i\mathbb{Z}$ for some $k, r_1, ..., r_j \in \mathbb{Z}_{>0}$ is the fundamental group of a topological space.

Exercise 4. Let $p: X \longrightarrow Y$ be a covering map between path connected, locally path connected spaces, $x \in X$ and y = p(x). Show that the following are equivalent:

- i) The covering is regular, i.e. $p_*(\pi_1(X, x))$ is normal in $\pi_1(Y, y)$.
- ii) The action of $\operatorname{Aut}(X/Y)$ on $p^{-1}(y)$ is transitive.
- iii) For every closed loop σ at y, if one lifting of σ is closed, then all liftings are closed.

Hand in: during the lecture on Tuesday, December 11th.