

LUDWIG-MAXIMILIANS-UNIVERSITÄT MÜNCHEN

Fall term 2018

Prof. D. Kotschick Dr. J. Stelzig G. Placini

Topology I

Sheet 7

Exercise 1. Let X be a path-connected, locally path-connected topological group and $\pi: Y \to X$ a path-connected covering space of X. Show that Y admits a topological group structure.

Exercise 2. Let $\pi: Y \to X$ be a *n*-sheeted covering of a space of X.

- a) Show that Y is compact if and only if X is.
- b) Prove that Y is Hausdorff if and only if the same is true for X.

Exercise 3. Let X be a simply connected space and $T^n = \underbrace{S^1 \times \cdots \times S^1}_{n \text{ times}}$.

- a) Show that every map $f: X \to T^n$ is nullhomotopic.
- b) Deduce that $\pi_k(T^n) = 0$ for all k > 1.

Exercise 4.

a) Consider the sphere S^3 as the space of unit quaternions $\{x \in \mathbb{H} | \|x\| = 1\}$ and identify \mathbb{R}^3 with the pure imaginary quaternions $\{a + b\mathbf{i} + c\mathbf{j} + d\mathbf{k} \in \mathbb{H} | a = 0\}$. Prove that the map

$$\pi: S^3 \to SO(3)$$
$$x \mapsto (p \mapsto xpx^{-1})$$

with multiplication in $\mathbb H,$ is a well defined covering map.

- b) Show that SO(3) is homeomorphic to $\mathbb{R}P^3$.
- c) Show that on S^3 the group structure induced by \mathbb{H} coincides with the one induced by the covering $\pi: S^3 \to SO(3)$.

Hand in: during the lecture on Tuesday, December 4th.