Prof. D. Kotschick
Dr. J. Stelzig
G. Placini

Topology I

Sheet 5

Exercise 1. Prove that $\operatorname{Im}(j)=\operatorname{ker}(\partial)$ in the long homotopy sequence

$$
\cdots \xrightarrow{\partial} \pi_{n}\left(A, a_{0}\right) \xrightarrow{i_{*}} \pi_{n}\left(X, a_{0}\right) \xrightarrow{j} \pi_{n}\left(X, A, a_{0}\right) \xrightarrow{\partial} \pi_{n-1}\left(A, a_{0}\right) \xrightarrow{i_{*}} \cdots
$$

of the pair (X, A).

Exercise 2. Let X, Y be topological spaces and $A \subset X$ a subset.
a) Show that there are short exact sequences

$$
0 \rightarrow \pi_{n}\left(A, a_{0}\right) \xrightarrow{i_{*}} \pi_{n}\left(X, a_{0}\right) \xrightarrow{j} \pi_{n}\left(X, A, a_{0}\right) \rightarrow 0
$$

if there exists a retraction $r: X \rightarrow A$.
b) Prove that the sequences above split if $n \geq 3$.
c) Compute $\pi_{n}\left(X \times Y, X \times\left\{y_{0}\right\},\left(x_{0}, y_{0}\right)\right)$ for $x_{0} \in X$ and $y_{0} \in Y$.

Exercise 3. Show that the forgetful map $\varphi: \pi_{n}\left(X, x_{0}\right) \rightarrow\left[S^{n}, X\right]$ exhibits $\left[S^{n}, X\right]$ as the set of orbits of the action of $\pi_{1}\left(X, x_{0}\right)$ on $\pi_{n}\left(X, x_{0}\right)$.

Exercise 4. Consider the group $\operatorname{SL}(2, \mathbb{R})$ as a subspace of \mathbb{R}^{4}.
a) Prove that, with the topology induced by $\mathbb{R}^{4}, \mathrm{SL}(2, \mathbb{R})$ is a topological group.
b) Show that $\mathrm{SL}(2, \mathbb{R})$ deformation retracts on $\mathrm{SO}(2)$.
c) Compute $\pi_{1}(\operatorname{SL}(2, \mathbb{R}))$.

