

LUDWIG-MAXIMILIANS-UNIVERSITÄT MÜNCHEN

MATHEMATISCHES INSTITUT

Fall term 2018

Prof. D. Kotschick Dr. J. Stelzig G. Placini

Topology I

Sheet 5

Exercise 1. Prove that $\text{Im}(j) = \text{ker}(\partial)$ in the long homotopy sequence

$$\cdots \xrightarrow{\partial} \pi_n(A, a_0) \xrightarrow{i_*} \pi_n(X, a_0) \xrightarrow{j} \pi_n(X, A, a_0) \xrightarrow{\partial} \pi_{n-1}(A, a_0) \xrightarrow{i_*} \cdots$$

of the pair (X, A).

Exercise 2. Let X, Y be topological spaces and $A \subset X$ a subset.

a) Show that there are short exact sequences

$$0 \to \pi_n(A, a_0) \xrightarrow{i_*} \pi_n(X, a_0) \xrightarrow{j} \pi_n(X, A, a_0) \to 0$$

if there exists a retraction $r: X \to A$.

- b) Prove that the sequences above split if $n \geq 3$.
- c) Compute $\pi_n(X \times Y, X \times \{y_0\}, (x_0, y_0))$ for $x_0 \in X$ and $y_0 \in Y$.

Exercise 3. Show that the forgetful map $\varphi : \pi_n(X, x_0) \to [S^n, X]$ exhibits $[S^n, X]$ as the set of orbits of the action of $\pi_1(X, x_0)$ on $\pi_n(X, x_0)$.

Exercise 4. Consider the group $SL(2,\mathbb{R})$ as a subspace of \mathbb{R}^4 .

- a) Prove that, with the topology induced by \mathbb{R}^4 , $SL(2,\mathbb{R})$ is a topological group.
- b) Show that $SL(2, \mathbb{R})$ deformation retracts on SO(2).
- c) Compute $\pi_1(SL(2,\mathbb{R}))$.

Hand in: during the lecture on Tuesday, November 20th.