

LUDWIG-MAXIMILIANS-UNIVERSITÄT MÜNCHEN



Fall term 2018

Prof. D. Kotschick Dr. J. Stelzig G. Placini

## Topology I

## Sheet 4

**Exercise 1.** A topological group is a group G which is equipped with a topology such that the multiplication and inverse

$$\begin{array}{ll} G \times G \longrightarrow G & \qquad \qquad G \longrightarrow G \\ (g,g') \longmapsto gg' & \qquad \qquad g \longmapsto g^{-1} \end{array}$$

are continuous maps (where  $G \times G$  is equipped with the product topology). Show that for any topological group G, the fundamental group  $\pi_1(G)$  is abelian and the action of  $\pi_1(G)$  on  $\pi_n(G)$  is trivial for all  $n \geq 2$ .

**Exercise 2.** Let X be a topological space. For any two points  $x_0, x_1 \in X$  and any path  $\gamma$  from  $x_0$  to  $x_1$ , we have an isomorphism

$$B_{\gamma}: \pi_n(X, x_0) \longrightarrow \pi_n(X, x_1).$$

In general, these maps depend on the path  $\gamma$ . What are necessary and sufficient conditions on X to ensure  $B_{\gamma}$  are independent of  $\gamma$  for all points  $x_0, x_1 \in X$ ?

**Exercise 3.** Show the fundamental theorem of algebra: Every nonconstant polynomial  $p \in \mathbb{C}[x]$  has at least one zero.

**Hint:** For any nonvanishing polynomial  $p, z \mapsto \frac{p(z)}{\|p(z)\|}$  gives rise to a map from  $S^1$  to itself. What is its degree?

**Exercise 4.** Show that  $\pi_1(S^n) = 0$  for  $n \ge 2$ .

**Hint:** Show that any homotopy class of maps  $S^1 \longrightarrow S^n$  contains a representative which leaves out one point.

Hand in: during the lecture on Tuesday, November 13th.