Prof. D. Kotschick
Dr. J. Stelzig
G. Placini

Topology I

Sheet 2

Exercise 1. Show that the interval $I=[0,1] \subseteq \mathbb{R}$ is compact, without using the fact that subspaces of \mathbb{R}^{n} are compact if and only if they are closed and bounded.

Exercise 2. Let X, Y be topological spaces. Show that the following statements are equivalent:

1. The spaces X and Y are both compact.
2. The topological sum (disjoint union) $X+Y$ is compact.
3. The direct product $X \times Y$ is compact.

Exercise 3.

a) Show that, for any $n \in \mathbb{Z}_{\geq 0}$, the space $\mathbb{R}^{n+1} \backslash\{0\}$ is homotopy equivalent to the sphere S^{n}.
b) Show that star-shaped subspaces of \mathbb{R}^{n} are contractible. (A subspace $A \in \mathbb{R}^{n}$ is called starshaped if there is a point $x_{0} \in A$ s.t. for any point $x \in A$ the segment $\left\{x_{0}+t\left(x-x_{0}\right) \mid t \in[0,1]\right\}$ lies in A.)

Exercise 4. Let \mathbb{K} be \mathbb{R} or \mathbb{C} and $n \in \mathbb{Z}_{>0}$. Projective n-space \mathbb{K}^{n} (the space of lines in \mathbb{K}^{n+1}) is defined as the quotient of $\mathbb{K}^{n+1} \backslash\{0\}$ by the multiplicative action of \mathbb{K}^{*}, equipped with the quotient topology. Show that
a) $\mathbb{R} \mathrm{P}^{1}$ is homeomorphic to the circle S^{1}.
b) $\mathbb{C} P^{1}$ is homeomorphic to the sphere S^{2}.

Remark: These are actually the only two cases in which $\mathbb{K} \mathrm{P}^{n}$ is homeomorphic (or even homotopyequivalent) to a sphere. We might see this later on.

