

LUDWIG-MAXIMILIANS-UNIVERSITÄT MÜNCHEN

MATHEMATISCHES INSTITUT

Fall term 2018

Prof. D. Kotschick Dr. J. Stelzig G. Placini

Topology I

Sheet 2

Exercise 1. Show that the interval $I = [0, 1] \subseteq \mathbb{R}$ is compact, without using the fact that subspaces of \mathbb{R}^n are compact if and only if they are closed and bounded.

Exercise 2. Let X, Y be topological spaces. Show that the following statements are equivalent:

- 1. The spaces X and Y are both compact.
- 2. The topological sum (disjoint union) X + Y is compact.
- 3. The direct product $X \times Y$ is compact.

Exercise 3.

- a) Show that, for any $n \in \mathbb{Z}_{\geq 0}$, the space $\mathbb{R}^{n+1} \setminus \{0\}$ is homotopy equivalent to the sphere S^n .
- b) Show that star-shaped subspaces of \mathbb{R}^n are contractible. (A subspace $A \in \mathbb{R}^n$ is called **star-shaped** if there is a point $x_0 \in A$ s.t. for any point $x \in A$ the segment $\{x_0 + t(x x_0) \mid t \in [0, 1]\}$ lies in A.)

Exercise 4. Let \mathbb{K} be \mathbb{R} or \mathbb{C} and $n \in \mathbb{Z}_{>0}$. Projective *n*-space $\mathbb{K}P^n$ (the space of lines in \mathbb{K}^{n+1}) is defined as the quotient of $\mathbb{K}^{n+1} \setminus \{0\}$ by the multiplicative action of \mathbb{K}^* , equipped with the quotient topology. Show that

- a) $\mathbb{R}P^1$ is homeomorphic to the circle S^1 .
- b) $\mathbb{C}P^1$ is homeomorphic to the sphere S^2 .

Remark: These are actually the only two cases in which $\mathbb{K}P^n$ is homeomorphic (or even homotopy-equivalent) to a sphere. We might see this later on.

Hand in: during the lecture on Tuesday, October 30th.