

LUDWIG-MAXIMILIANS-UNIVERSITÄT MÜNCHEN

MATHEMATISCHES INSTITUT

Fall term 2017

Prof. T. Vogel
G. Placini

Topology I

Sheet 14

Exercise 1. Show that the spaces $S^1 \times S^1$ and $S^1 \vee S^1 \vee S^2$ have isomorphic homology groups, but are not homotopy equivalent.

Exercise 2.

- a) For a map $f: S^n \to S^n$ let $\Sigma(f): \Sigma(S^n) \cong S^{n+1} \to S^{n+1}$ be the suspension of f defined by $\Sigma(f)(x,t) = (f(x),t)$. Show that $\deg(\Sigma(f)) = \deg(f)$.
- b) Construct a surjective map $f: S^n \to S^n$ of degree zero, for each $n \ge 1$.

Exercise 3. Given a map $f: S^{2n} \to S^{2n}$, show that there is some point $x \in S^{2n}$ with either f(x) = x or f(x) = -x. Deduce that every map $\mathbb{R}P^{2n} \to \mathbb{R}P^{2n}$ has a fixed point.

Exercise 4. Compute the homology of $S^k \times S^l$.