

LUDWIG-MAXIMILIANS-UNIVERSITÄT MÜNCHEN

Fall term 2017

Prof. T. Vogel G. Placini

Topology I

Sheet 13

Exercise 1. Let Y be a convex set in a Eucledian space. Show that the chain map $i : LC_*(Y) \to C_*(Y)$ given by the inclusion of linear simplices induces an isomorphism in homology. [Hint: One can define a chain homotopy inverse $q : C_*(Y) \to LC_*(Y)$ by $q(\sigma) = [\sigma(v_0), \ldots, \sigma(v_n)]$.]

Exercise 2.

- a) Show that if $0 \to A \to B \to C \to 0$ is a short exact sequence of free abelian groups then $B \simeq C \oplus A$.
- b) Classify all abelian groups G that fit into the short exact sequence $0 \to \mathbb{Z}_{p^k} \to G \to \mathbb{Z}_{p^k} \to 0$ where k > 0 and p is a prime number. [Fact: Every finite abelian group is isomorphic to a direct sum $\sum \mathbb{Z}_{p^{k_i}}$ where p_i 's are prime and $k_i > 0$.]

Exercise 3. Show that $H_1(X, A)$ is not isomorphic to $\widetilde{H}_1(X/A)$ if $A = \{\frac{1}{2}; \frac{1}{3}; \ldots; \frac{1}{n}; \ldots\} \cup \{0\}$ and X = [0, 1].

Hand in: during the lecture on Monday, January 29th.