

LUDWIG-MAXIMILIANS-UNIVERSITÄT MÜNCHEN

Fall term 2017

Prof. T. Vogel G. Placini

Topology I

Sheet 10

Exercise 1. Show that every subgroup H of a free group G is free.

Exercise 2.

- a) Show that $f: X \to Y$ is a homotopy equivalence if there exist maps $f, g: Y \to X$ such that $fg \simeq \text{Id}$ and $hf \simeq \text{Id}$.
- b) Let \widetilde{X} and \widetilde{Y} be simply-connected covering spaces of the path-connected, locally path-connected spaces X and Y such that $X \simeq Y$. Show that \widetilde{X} is homotopy equivalent to \widetilde{Y} .

Exercise 3. Describe the universal covering pr: $\widetilde{X} \to X$ where $X = S^2 \bigcup \{(0,0,z) \in \mathbb{R}^3 | -1 \le z \le 1\}$.

Exercise 4. Consider the action of \mathbb{Z} on $X = \mathbb{R}^2 \setminus \{0\}$ defined by $n(x, y) = (2^n x, 2^{-n} y)$. Prove that pr: $X \to X/\mathbb{Z}$ is a covering map but X/\mathbb{Z} is not Hausdorff.

Exercise 5. Consider covering spaces $pr: \widetilde{X} \to X$ with \widetilde{X} connected and X a CW-complex. Show that:

- a) Two such covering spaces $pr_1: \widetilde{X}_1 \to X$ and $pr_2: \widetilde{X}_2 \to X$ are isomorphic if and only if the restrictions $pr_1: \widetilde{X}_1^1 \to X^1$ and $pr_2: \widetilde{X}_2^1 \to X^1$ are isomorphic.
- b) $pr: \widetilde{X} \to X$ is a normal covering space if and only if $pr: \widetilde{X}^1 \to X^1$ is normal.

Hand in: during the lecture on Monday, January 8th.