

MAXIMILIANS-UNIVERSITÄT MÜNCHEN MATHEMATISCHES INSTITUT

Fall term 2017

Prof. T. Vogel G. Placini

Topology I

Sheet 9

Exercise 1.

- a) Show that if $pr_1: \widetilde{X_1} \to X_1$ and $pr_2: \widetilde{X_2} \to X_2$ are covering maps, then $pr_1 \times pr_2: \widetilde{X_1} \times \widetilde{X_2} \to X_1 \times X_2$ is a covering map.
- b) Show that if $pr: Y \to X$ is a covering map and $A \subset X$ then $pr: pr^{-1}(A) \to A$ is a covering map.

Exercise 2. Let X be the space given by the union of the graph $\left\{\left(x,\sin(\frac{1}{x})\right)|0< x\leq \frac{1}{\pi}\right\}$, the segment $Y=\{(0,y)|-1\leq y\leq 1\}$ and a path connecting the points (0,0) and $(\frac{1}{\pi},0)$.

- a) Prove that X is simply connected.
- b) Show that the quotient X/Y is homeomorphic to S^1 .
- c) Show that the quotient map $p: X \to S^1$ does not admit a lift $\tilde{p}: X \to \mathbb{R}$ (i.e. the local path-connectedness of X is a necessary hypothesis in the lifting criterion).

Exercise 3. Let (X, d) be a metric space. Define the length $L(\gamma)$ of a curve γ to be

$$L(\gamma) := \lim_{n \to \infty} \sum_{1=0}^{n} d(\gamma(t_i), \gamma(t_{i-1}))$$

where the t_i 's give a regular partition of [0,1]. (X,d) is a **length space** if $d(x_0, x_1) = \inf_{\gamma} L(\gamma)$ where the infimum is taken over all paths γ connecting x_0 to x_1 .

Suppose $pr: Y \to X$ is a covering such that Y is path connected and X is a length space.

- a) Prove that there exists a metric d_Y for which Y is a length space.
- b) Show that for any $y \in Y$ there exists a neighbourhood V of y such that $d_Y(y_0, y_1) = d(pr(y_0), pr(y_1))$ for all $y_0, y_1 \in V$.

(please turn)

Exercise 4. Consider the sphere S^3 as the space of unit quaternions $\{x \in \mathbb{H} | ||x|| = 1\}$ and identify \mathbb{R}^3 with the pure imaginary quaternions $\{a + b\mathbf{i} + c\mathbf{j} + d\mathbf{k} \in \mathbb{H} | a = 0\}$. Prove that the map

$$pr: S^3 \to SO(3)$$

 $x \mapsto (p \mapsto xpx^{-1})$

with multiplication in \mathbb{H} , is a well defined covering map.

Hand in: during the lecture on Monday, December 18th.