

LUDWIG-MAXIMILIANS-UNIVERSITÄT MÜNCHEN

Fall term 2017

Prof. T. Vogel G. Placini

Sheet 2

Exercise 1. Prove the following statements.

- a) Any subspace of a Hausdorff space is Hausdorff.
- b) An arbitrary product of Hausdorff spaces is Hausdorff.
- c) $\mathbb{R}^n/\mathring{D^n}$ is not Hausdorff.
- d) $\mathbb{R}^n / \overline{D^n}$ is homeomorphic to \mathbb{R}^n .

Exercise 2.

- a) Show that the space $S^n \times S^m/(S^n \vee S^m)$ is homeomorphic to S^{n+m} . [Hint: You can start by showing that $S^n \times S^m \setminus (S^n \vee S^m) \simeq D^{n+m}$ and use then the homeomorphism $S^n \simeq D^n/\partial D^n$.]
- b) Prove that the suspension $\sum (S^n)$ is homeomorphic to S^{n+1} .

Exercise 3.

- a) Let $\{X_{\alpha}\}_{\alpha \in A}$ be a family of topological spaces. Describe the finest topology on the disjoint union $\bigcup_{\alpha \in A} X_{\alpha}$ such that the injections $i_{\beta} : X_{\beta} \to \bigcup_{\alpha \in A} X_{\alpha}$ are continuous.
- b) Let X_1, \ldots, X_n be topological spaces and x_i a point in X_i for $1 \le i \le n$. Show that the natural map, given by

$$\begin{array}{ccc} X_1 \lor \dots \lor X_n \longrightarrow X_1 \times \dots \times X_n \\ y_i & \mapsto (x_1, \dots, y_i, \dots, x_n) \end{array}$$

for $y_i \in X_i$, is continuous.

c) Set $X_i = S^1$ for all $i \in \mathbb{N}$, $x_i = 1 \in S^1$ and consider $X = \bigvee_{i \in \mathbb{N}} X_i$. Is the map

$$f: X \to \prod_{i \in \mathbb{N}} X_i,$$

analogous to point b), a homeomorphism onto its image? [Hint: You may use that $\prod_{i \in \mathbb{N}} X_i$ is compact.]

Exercise 4. Show that the complex projective space \mathbb{CP}^1 is homeomorphic to S^2 . [Hint: Consider $\mathbb{C}^2 = \{(x, y) \in \mathbb{C}^2 | y \neq 0\} \cup \{(x, 0) \in \mathbb{C}^2\}$ and their image under the quotient.]

(please turn)

Exercise 5. ¹ A topological space Y is said **1st countable** if for each point $y \in Y$ there exists a family of open neighbourhoods $\{U_j\}_{j\in\mathbb{N}}$ such that for any neighbourhood V of y there exist $j \in \mathbb{N}$ with $U_j \subset V$.

- a) Show that if $\{X_i\}_{i\in\mathbb{N}}$ is a family of 1^{st} countable spaces then so is $\prod_{i\in\mathbb{N}} X_i$.
- b) Prove that $\bigvee_{i \in \mathbb{N}} S^1$ is not 1^{st} countable.
- c) Conclude that there is no embedding

$$f: \bigvee_{i \in \mathbb{N}} S^1 \longrightarrow \prod_{i \in \mathbb{N}} S^1.$$

Hand in: during the lecture on Monday, October 30th.

 $^{^{1}}$ For motivated students, this exercise is harder but it complements exercise 3.