MATHEMATISCHES InSTITUT

Summer term 2020
Prof. D. Kotschick G. Placini

Mathematical Gauge Theory II

Sheet 12

Exercise 1. (Complex conjugation on $\mathbb{C P}^{2}$) We want to show that there exists an orientation preserving diffeomorphism $d: \mathbb{C P}^{2} \rightarrow \mathbb{C P}^{2}$ which is the identity on some ball $D^{4} \subset \mathbb{C P}^{2}$ and induces -Id on $H_{2}\left(\mathbb{C P}^{2} ; \mathbb{Z}\right)$.

1. Consider the map $c: \mathbb{C P}^{2} \rightarrow \mathbb{C P}^{2}$ given by complex conjugation of the homogeneous coordinates. Prove that c is orientation preserving and induces -Id on $\mathrm{H}_{2}\left(\mathbb{C P}^{2} ; \mathbb{Z}\right)$.
2. Show that c preserves $\mathbb{C}^{2}=\left\{\left[z_{0}: z_{1}: z_{2}\right] \in \mathbb{C P}^{2} \mid z_{0}=1\right\}$ and find an explicit isotopy f_{t} on \mathbb{C}^{2} with $f_{0}=\mathrm{Id}_{\mathbb{C}^{2}}$ and $f_{1}=\left.c^{-1}\right|_{\mathbb{C}^{2}}$.
3. Let $D^{4} \subset \mathbb{C}^{2}$ be a closed ball. Prove that c is isotopic to an orientation preserving diffeomorphism $d: \mathbb{C P}^{2} \rightarrow \mathbb{C P}^{2}$ with $\left.d\right|_{D^{4}}=\operatorname{Id}_{D^{4}}$.

Exercise 2. (Reflection in (± 1)-sphere)

1. Let N be a smooth oriented 4-manifold and $M=N \# \mathbb{C P}{ }^{2}$ or $M=N \# \overline{\mathbb{C P}}^{2}$. Let $E \in H_{2}(M ; \mathbb{Z})$ be the homology class of the sphere $\mathbb{C P}^{1} \subset \mathbb{C P}^{2} \backslash D^{4} \subset M$ with self-intersection $E^{2}= \pm 1$. Use the diffeomorphism d from Exercise 1 to show that there exists an orientation preserving diffeomorphism $f: M \rightarrow M$ which induces on integer homology the map f_{*} given by

$$
\begin{aligned}
f_{*}: H_{2}(M ; \mathbb{Z}) & \longrightarrow H_{2}(M ; \mathbb{Z}) \\
A & \longmapsto \neq 2(A \cdot E) E .
\end{aligned}
$$

2. For an arbitrary smoothly embedded sphere S^{2} of self-intersection ± 1 in a 4 -manifold X, show that a tubular neighbourhood is diffeomorphic to a punctured $\mathbb{C P}^{2}$, and conclude that X is diffeomorphic to $Y \# \mathbb{C P}^{2}$ or $Y \# \overline{\mathbb{C P}}^{2}$, so that the above result is applicable.

Exercise 3. (Spheres with self-intersection zero) Suppose that Y is a smooth closed oriented 4manifold with $b_{2}^{+}(Y) \geq 2$ which contains a smoothly embedded $S^{2} \hookrightarrow Y$ of self-intersection zero, representing a class of infinite order in $H_{2}(Y ; \mathbb{Z})$. Consider the manifold $X=Y \# \overline{\mathbb{C P}}^{2}$.

1. Prove that there exist infinitely many pairwise distinct classes $S_{i} \in H_{2}(X ; \mathbb{Z})$ represented by embedded 2 -spheres of self-intersection -1 .
2. Show that if there exists a Spin^{c}-structure \mathfrak{s} on X with non-zero Seiberg-Witten invariant, then there are infinitely many such structures. Conclude that the Seiberg-Witten invariants of X and Y are in fact identically zero.

Hint: You may use Theorem 8.31.

Exercise 4. (Seiberg-Witten invariants of $p \mathbb{C P}^{2} \# q \overline{\mathbb{C P}}^{2}$) Let $X=p \mathbb{C P}^{2} \# q \overline{\mathbb{P P}}^{2}$. Suppose that $p, q \geq 2$. Prove that $S W_{X} \equiv 0$.

Hint: This appeared in Example 8.29, as a consequence of Theorem 8.28. It also follows from the fact that X admits metrics with positive scalar curvature. You should give a proof which is independent of these results, using Exercise 3 above.

