Mathematical Gauge Theory II

Sheet 10

Exercise 1. (Metric of positive scalar curvature on $\mathbb{C P}{ }^{2} \# \overline{\mathbb{C P}}^{2}$) Prove that $\mathbb{C P}^{2} \# \overline{\mathbb{C P}}^{2}$ has a metric with positive scalar curvature, without using the hint from Exercise 4 of Sheet 9.

Exercise 2. (Seiberg-Witten equations on $\left.\mathbb{C P}^{2}\right)$ Let $z=\left(z_{1}, z_{2}\right)$ be local coordinates on $\mathbb{C P}^{2}$. Consider the Fubini-Study metric

$$
g_{F S}=\sum_{i, j=1}^{2} \frac{\delta_{i j}\left(1+|z|^{2}\right)-\bar{z}_{i} z_{j}}{\left(1+|z|^{2}\right)^{2}} \mathrm{~d} z_{i} \otimes \mathrm{~d} \bar{z}_{j}
$$

associated to the Kähler form

$$
\omega_{F S}=i \partial \bar{\partial} \log \left(1+|z|^{2}\right) .
$$

Note that $\omega_{F S}$ is a parallel 2-form.
(a) Classify Spin^{c}-structures on $\mathbb{C} P^{2}$ in terms of the cohomology.
(b) Show that the Fubini-Study metric has positive scalar curvature.
(c) Prove that for every Spin^{c}-structure the unperturbed Seiberg-Witten equation has no solution.
(d) Consider the perturbed Seiberg-Witten equations

$$
\begin{aligned}
& D_{A}^{+} \Phi=0 \\
& F_{\hat{A}}^{+}=\sigma(\Phi, \Phi)+i \varepsilon \omega_{F S} .
\end{aligned}
$$

Show that for every Spin^{c}-structure there is a unique ε such that the equations have precisely one solution, which is reducible. What is the relation between this value of ε and the Spin^{c}-structure?

Exercise 3. (Small perturbations of the Seiberg-Witten equations on T^{4}) Consider $T^{4}=\mathbb{R}^{4} / \mathbb{Z}^{4}$ with its flat Riemannian metric g_{0} induced by the scalar product of \mathbb{R}^{4}. Let $\omega=d x_{1} \wedge d x_{2}+d x_{3} \wedge d x_{4}$. Note that this is a parallel g_{0}-self-dual 2-form.

For a Spin^{c}-structure $\mathfrak{s}=(\gamma, V)$ on T^{4} consider the perturbed Seiberg-Witten equations

$$
\begin{aligned}
& D_{A}^{+} \Phi=0 \\
& F_{\hat{A}}^{+}=\sigma(\Phi, \Phi)+i \varepsilon \omega
\end{aligned}
$$

where $0<\varepsilon \ll 1$ is real and positive, and very small. Assume that the expected dimension of the moduli space of solutions is non-negative.
(a) Prove that if there is a solution to the equations, then $\left\langle c_{1}^{2}\left(L_{\mathfrak{s}}\right),\left[T^{4}\right]\right\rangle=0$, equivalently the expected dimension is zero.
(c) For the unique Spin^{c}-structure with $c_{1}\left(L_{\mathfrak{s}}\right)=0$ prove that there is precisely one solution up to gauge equivalence for every $\varepsilon \neq 0$.

Exercise 4. (Non-homotopic almost complex structures)
(a) Show that the space of orthogonal almost complex structures on \mathbb{R}^{4} is $S O(4) / U(2) \cong \mathbb{C} P^{1}$.
(b) Show that there are almost complex structures J_{0}, J_{1} on a suitable 4-manifold ,e.g. $S^{1} \times S^{3}$, that have the same Chern classes but that are not homotopic as almost complex structures.
[Hint: You can use the fact that $\pi_{3}\left(S^{2}\right)=\mathbb{Z}$.]

You can email the solutions until Tuesday, July 7th at noon.

