

LUDWIG-MAXIMILIANS-UNIVERSITÄT MÜNCHEN

Summer term 2020

Prof. D. Kotschick G. Placini

Mathematical Gauge Theory II

Sheet 7

Exercise 1. (Non-negative scalar curvature) Let (X, g) be a smooth closed oriented Riemannian 4manifold with non-negative scalar curvature endowed with a Spin^c-structure \mathfrak{s} . Show that any solution (A, Φ) to the unperturbed Seiberg-Witten equations is reducible, that is, satisfies $\Phi = 0$.

Exercise 2. (Rescaling the metric) Let (X, g) be a smooth closed oriented Riemannian 4-manifold with a Spin^c-structure \mathfrak{s} and let $\omega \in \Omega^2_+(X, i\mathbb{R})$. Consider the rescaled metric $\tilde{g} = \lambda^2 g$ for $\lambda \in \mathbb{R}^+$.

- 1. Prove that if (A, Φ) is a solution to the ω -perturbed Seiberg-Witten equations on (X, g), then $(A, \lambda^{-1}\Phi)$ satisfies the Seiberg-Witten equations on (X, \tilde{g}) . [Notice that the Clifford module $\gamma: TX \longrightarrow \text{End}(V)$ is rescaled.]
- 2. Show that the energy of the pair (A, Φ) with respect to the metric g equals the energy of $(A, \lambda^{-1}\Phi)$ with respect to the metric \tilde{g} .

Exercise 3. (Reducible solutions) Let (X, g) be a smooth closed oriented Riemannian 4-manifold endowed with a Spin^c-structure \mathfrak{s} . Show that the unperturbed Seiberg-Witten equations admit a reducible solution if and only if the harmonic representative of $c_1(L_{\mathfrak{s}})$ is anti-self-dual.

Exercise 4. (Chern classes of tensor products, cf. Remark 4.41 in the notes)

1. Let V, W be complex vector bundles of rank 2. Use the splitting principle to prove that

$$c_1(V \otimes W) = 2(c_1(V) + c_1(W))$$

$$c_2(V \otimes W) = 2(c_2(V) + c_2(W)) + c_1^2(V) + c_1^2(W) + 3c_1(V)c_1(W).$$

2. Let V_+ be the spinor bundle of a Spin^c-structure over an oriented Riemannian 4-manifold. Use an isomorphism induced from Clifford multiplication to prove that

$$p_1(\Lambda^2_+) = c_1^2(V_+) - 4c_2(V_+).$$

You can email the solutions until Tuesday, June 16th at noon.