

LUDWIG-MAXIMILIANS-UNIVERSITÄT MÜNCHEN

Summer term 2020

Prof. D. Kotschick G. Placini

Mathematical Gauge Theory II

Sheet 6

Exercise 1. $(S^2$ -bundles over $\Sigma_g)$ Let Σ_g denote the surface of genus g.

- 1. Suppose $D^2 \subset \Sigma_g$ is a small disk around a point. Show that $\Sigma_g \setminus D^2$ is homotopy equivalent to a 1-point union $\bigvee_{i=1}^{2g} S_i^1$ of 2g circles.
- 2. Prove that for every $g \ge 0$ there are at most two orientable S^2 -bundles over Σ_g up to diffeomorphism.

Exercise 2.

- 1. Prove that if $P: H_1 \longrightarrow H_2$ is a Fredholm operator between Hilbert spaces, then $\operatorname{coker} P \cong \ker P^*$.
- 2. Let M be a closed oriented connected Riemannian manifold and let d^* be the formal adjoint of d with respect to the L^2 scalar product. Show that the operator

$$P = d + d^* \colon \bigoplus_{k \text{ even}} \Omega^k(M) \longrightarrow \bigoplus_{k \text{ odd}} \Omega^k(M)$$

is Fredholm by showing that $\dim \ker(P)$ and $\dim \operatorname{coker}(P)$ are finite. Compute $\operatorname{ind}(P)$.

Exercise 3. (Spinor identities) Let $\Gamma(V_+)$ be the space of positive spinors associated to a $\operatorname{Spin}^c(n)$ -structure on a smooth closed oriented Riemannian 4-manifold. We give $\operatorname{End}(V_+)$ the scalar product

$$\langle A, B \rangle = \operatorname{tr}\left(AB^{\dagger}\right)$$

and define the quadratic form σ as in the notes:

$$\sigma \colon \Gamma(V_+) \longrightarrow \Omega^2_+(X, i\mathbb{R})$$
$$\Phi \longmapsto \sigma(\Phi, \Phi) = \gamma^{-1} \left((\Phi \otimes \Phi^{\dagger})_0 \right).$$

Prove for all $\omega, \eta \in i\Lambda^2_+$ and $\Phi \in V_+$ the following identities:

$$\begin{split} \langle \gamma(\omega), \gamma(\eta) \rangle &= 4 \langle \omega, \eta \rangle \\ \langle \gamma(\omega) \Phi, \Phi \rangle &= 4 \langle \omega, \sigma(\Phi, \Phi) \rangle \\ & |\Phi|^4 = 8 |\sigma(\Phi, \Phi)|^2. \end{split}$$

(please turn)

Exercise 4. (The quadratic form σ and charge conjugation) We define charge conjugation on spinors in $V_+ \cong \mathbb{C}^2$ as:

$$J: V_{+} \longrightarrow V_{+}$$

$$\begin{pmatrix} a \\ b \end{pmatrix} \longmapsto \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix} \begin{pmatrix} \bar{a} \\ \bar{b} \end{pmatrix}.$$

Prove that

 $\sigma(J\Phi,J\Phi)=-\sigma(\Phi,\Phi)\quad \forall \Phi\in V_+.$

You can email the solutions until Tuesday, June 9th at 9:00.